search
HomeDatabaseRedisDetailed explanation of distributed lock implementation in Redis

With the rapid development of mobile Internet and the explosive growth of data volume, distributed systems are becoming more and more popular. In distributed systems, the problem of concurrent operations has become more and more prominent. When multiple threads request shared resources at the same time, these resources need to be locked to ensure data consistency. Distributed locks are one of the effective solutions for implementing concurrent operations in distributed systems. This article will introduce in detail how to use Redis to implement distributed locks.

  1. Redis Basics

Redis is a memory-based key-value storage system that is widely used in distributed systems. As a high-performance NoSQL database, Redis has received widespread attention for its efficient read and write performance and rich data structures. Redis can implement distributed storage based on multiple machines and supports the following data structures:

  • String (string)
  • Hash (hash)
  • List ( list)
  • set(set)
  • ordered set(sorted set)

The operations of Redis are based on these data structures, which are needed to implement distributed locks. A feature of Redis is used: SETNX (SET if Not eXists), that is, the value of the key can only be set when the specified key does not exist. If the key already exists, the SETNX operation returns failure.

  1. Ideas of implementing distributed locks

To implement distributed locks, you first need to clarify the goal:

  • In a distributed environment, When multiple threads request the same resource at the same time, ensure that only one thread can obtain the lock.
  • If a thread has obtained the lock, other threads need to wait for the lock to be released.

In order to achieve the above goals, the following ideas can be adopted:

  • Use the SETNX command of Redis to create a new key as the identification of the lock.
  • If the SETNX command returns successfully, it means that the current thread has obtained the lock.
  • Set the expiration time of the key to avoid deadlock.
  • When a thread completes its task, the lock is released and the key is deleted.
  1. Implementation code example

First, create a Redis connection:

import redis

conn = redis.Redis(host='localhost', port=6379, db=0)

Then, define the functions for acquiring and releasing locks:

def acquire_lock(conn, lockname, acquire_timeout=10, lock_timeout=10):
    identifier = str(uuid.uuid4())
    lockname = "lock:" + lockname
    end = time.time() + acquire_timeout
    while time.time() < end:
        if conn.setnx(lockname, identifier):
            conn.expire(lockname, lock_timeout)
            return identifier
        elif not conn.ttl(lockname):
            conn.expire(lockname, lock_timeout)
        time.sleep(0.001)
    return False

def release_lock(conn, lockname, identifier):
    pipe = conn.pipeline(True)
    lockname = "lock:" + lockname
    while True:
        try:
            pipe.watch(lockname)
            if pipe.get(lockname) == identifier:
                pipe.multi()
                pipe.delete(lockname)
                pipe.execute()
                return True
            pipe.unwatch()
            break
        except redis.exceptions.WatchError:
            pass
    return False

Among them, the acquire_lock function is used to acquire the lock. The parameter description is as follows:

  • conn: Redis connection.
  • lockname: The name of the lock.
  • acquire_timeout: The timeout when acquiring the lock, the default is 10 seconds.
  • lock_timeout: The expiration time of the lock, the default is 10 seconds.

This function first generates a random identifier, then tries to acquire the lock every 0.001 seconds, and sets the expiration time. If the lock is not acquired within the specified timeout, False is returned.

The release_lock function is used to release the lock. The parameter description is as follows:

  • conn: Redis connection.
  • lockname: The name of the lock.
  • identifier: The identifier returned when acquiring the lock.

This function first uses the WATCH command to monitor the lock. If the value of the lock is the same as the identifier, it uses the MULTI command to delete the lock and perform the operation. Otherwise, terminate monitoring and return False.

Finally, the distributed lock function can be realized using the acquire_lock and release_lock functions. The sample code is as follows:

import time
import uuid

def do_task():
    print("Task started...")
    time.sleep(5)
    print("Task finished")

def main():
    lockname = "mylock"
    identifier = acquire_lock(conn, lockname)
    if not identifier:
        print("Failed to obtain lock")
        return
    try:
        do_task()
    finally:
        release_lock(conn, lockname, identifier)

if __name__ == '__main__':
    main()

In this sample code, the acquire_lock function is used to acquire the lock, and the release_lock function is called to release the lock after executing the task.

  1. Summary

Distributed lock is a technology widely used in distributed systems, which can effectively solve the problem of data consistency under concurrent operations. In this article, we introduce in detail how to use Redis to implement distributed locks. By using Redis's SETNX command and expiration time settings, as well as WATCH and MULTI commands, you can implement the distributed lock function.

The above is the detailed content of Detailed explanation of distributed lock implementation in Redis. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Redis: Exploring Its Data Model and StructureRedis: Exploring Its Data Model and StructureApr 16, 2025 am 12:09 AM

Redis's data model and structure include five main types: 1. String: used to store text or binary data, and supports atomic operations. 2. List: Ordered elements collection, suitable for queues and stacks. 3. Set: Unordered unique elements set, supporting set operation. 4. Ordered Set (SortedSet): A unique set of elements with scores, suitable for rankings. 5. Hash table (Hash): a collection of key-value pairs, suitable for storing objects.

Redis: Classifying Its Database ApproachRedis: Classifying Its Database ApproachApr 15, 2025 am 12:06 AM

Redis's database methods include in-memory databases and key-value storage. 1) Redis stores data in memory, and reads and writes fast. 2) It uses key-value pairs to store data, supports complex data structures such as lists, collections, hash tables and ordered collections, suitable for caches and NoSQL databases.

Why Use Redis? Benefits and AdvantagesWhy Use Redis? Benefits and AdvantagesApr 14, 2025 am 12:07 AM

Redis is a powerful database solution because it provides fast performance, rich data structures, high availability and scalability, persistence capabilities, and a wide range of ecosystem support. 1) Extremely fast performance: Redis's data is stored in memory and has extremely fast read and write speeds, suitable for high concurrency and low latency applications. 2) Rich data structure: supports multiple data types, such as lists, collections, etc., which are suitable for a variety of scenarios. 3) High availability and scalability: supports master-slave replication and cluster mode to achieve high availability and horizontal scalability. 4) Persistence and data security: Data persistence is achieved through RDB and AOF to ensure data integrity and reliability. 5) Wide ecosystem and community support: with a huge ecosystem and active community,

Understanding NoSQL: Key Features of RedisUnderstanding NoSQL: Key Features of RedisApr 13, 2025 am 12:17 AM

Key features of Redis include speed, flexibility and rich data structure support. 1) Speed: Redis is an in-memory database, and read and write operations are almost instantaneous, suitable for cache and session management. 2) Flexibility: Supports multiple data structures, such as strings, lists, collections, etc., which are suitable for complex data processing. 3) Data structure support: provides strings, lists, collections, hash tables, etc., which are suitable for different business needs.

Redis: Identifying Its Primary FunctionRedis: Identifying Its Primary FunctionApr 12, 2025 am 12:01 AM

The core function of Redis is a high-performance in-memory data storage and processing system. 1) High-speed data access: Redis stores data in memory and provides microsecond-level read and write speed. 2) Rich data structure: supports strings, lists, collections, etc., and adapts to a variety of application scenarios. 3) Persistence: Persist data to disk through RDB and AOF. 4) Publish subscription: Can be used in message queues or real-time communication systems.

Redis: A Guide to Popular Data StructuresRedis: A Guide to Popular Data StructuresApr 11, 2025 am 12:04 AM

Redis supports a variety of data structures, including: 1. String, suitable for storing single-value data; 2. List, suitable for queues and stacks; 3. Set, used for storing non-duplicate data; 4. Ordered Set, suitable for ranking lists and priority queues; 5. Hash table, suitable for storing object or structured data.

How to implement redis counterHow to implement redis counterApr 10, 2025 pm 10:21 PM

Redis counter is a mechanism that uses Redis key-value pair storage to implement counting operations, including the following steps: creating counter keys, increasing counts, decreasing counts, resetting counts, and obtaining counts. The advantages of Redis counters include fast speed, high concurrency, durability and simplicity and ease of use. It can be used in scenarios such as user access counting, real-time metric tracking, game scores and rankings, and order processing counting.

How to use the redis command lineHow to use the redis command lineApr 10, 2025 pm 10:18 PM

Use the Redis command line tool (redis-cli) to manage and operate Redis through the following steps: Connect to the server, specify the address and port. Send commands to the server using the command name and parameters. Use the HELP command to view help information for a specific command. Use the QUIT command to exit the command line tool.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Chat Commands and How to Use Them
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!