


In the Generative Adversarial Network (GAN) algorithm, the generator and the discriminator are competing models. Through continuous optimization, the generator tries to generate data that is similar to real data, while the discriminator tries to distinguish the generated data from real data. In this process, GAN requires a large number of iterative calculations, and these calculations may be very time-consuming. Therefore, we need an efficient caching mechanism to accelerate the calculation process of GAN.
In recent years, Golang has become a very popular programming language and has received widespread attention due to its efficiency and concurrency. In this article, we will introduce how to use Golang to implement an efficient caching mechanism to optimize the calculation process of GAN.
Basic concept of caching mechanism
The caching mechanism basically stores calculation results in memory so that they can be quickly accessed during subsequent calculations. This process can be seen as a "memory" process, that is, saving the calculation results can make the next calculation more quickly.
In GAN, we can think of the caching mechanism as a way to store the calculation results of the generator and discriminator. Through the caching mechanism, we can avoid repeatedly calculating the same data, thereby improving the computational efficiency of the generator and discriminator.
How to implement caching mechanism in Golang
In Golang, we can use map data structure to implement a simple caching mechanism. This caching mechanism can automatically cache calculation results during the processing of the generator and discriminator, and automatically call the cache operation in subsequent calculations.
The following is a basic caching mechanism code example:
package main import ( "fmt" "sync" ) //定义一个存储键值对的map var cache = make(map[string]interface{}) //定义一个缓存锁 var cacheLock sync.Mutex //定义一个封装了缓存机制的函数 func cached(key string, getter func() interface{}) interface{} { cacheLock.Lock() defer cacheLock.Unlock() //检查缓存是否存在 if value, ok := cache[key]; ok { return value } //如果不存在,则调用getter方法进行计算 value := getter() //将计算结果存入缓存 cache[key] = value return value } func main() { fmt.Println(cached("foo", func() interface{} { fmt.Println("Calculating foo.") return "bar" })) fmt.Println(cached("foo", func() interface{} { fmt.Println("Calculating foo.") return "baz" })) }
In this example, we define a map structure to store key-value pairs and use Mutex to achieve thread synchronization. The cached function is a function that encapsulates the caching mechanism and consists of two parameters: a key parameter and a getter parameter. The getter parameter is a callback function used to obtain the value that needs to be calculated. In the cached function, we first check whether there is already a value that needs to be calculated in the map. If so, the value is returned directly; if not, the getter function is called to perform the calculation and the calculation result is stored in the map for later use.
The use of caching mechanism in GAN
In GAN, the caching mechanism can be applied in many places, including:
1. Store the real data processed by the discriminator , the next calculation has been carried out;
2. The forged data processed by the generator has been stored, and the next calculation has been carried out;
3. The calculation result of the loss function has been stored, and the next calculation has been carried out One calculation.
Below we will introduce a GAN sample code based on the caching mechanism.
package main import ( "fmt" "math/rand" "sync" "time" ) const ( realTotal = 100000 //真实数据的总数 fakeTotal = 100000 //伪造数据的总数 batchSize = 100 //每个batch储存的数据量 workerNumber = 10 //并发的worker数 iteration = 100 //迭代次数 learningRate = 0.1 //学习速率 cacheSize = realTotal * 2 //缓存的空间大小 ) var ( realData = make([]int, realTotal) //储存真实数据的数组 fakeData = make([]int, fakeTotal) //储存伪造数据的数组 cache = make(map[string]interface{}, cacheSize) cacheLock sync.Mutex ) func generate(i int) int { key := fmt.Sprintf("fake_%d", i/batchSize) return cached(key, func() interface{} { fmt.Printf("Calculating fake data [%d, %d). ", i, i+batchSize) output := make([]int, batchSize) //生成伪造数据 for j := range output { output[j] = rand.Intn(realTotal) } return output }).([]int)[i%batchSize] } func cached(key string, getter func() interface{}) interface{} { cacheLock.Lock() defer cacheLock.Unlock() //先尝试从缓存中读取值 if value, ok := cache[key]; ok { return value } //如果缓存中无值,则进行计算,并存入缓存中 value := getter() cache[key] = value return value } func main() { rand.Seed(time.Now().Unix()) //生成真实数据 for i := 0; i < realTotal; i++ { realData[i] = rand.Intn(realTotal) } //初始化生成器和判别器的参数 generatorParams := make([]float64, realTotal) for i := range generatorParams { generatorParams[i] = rand.Float64() } discriminatorParams := make([]float64, realTotal) for i := range discriminatorParams { discriminatorParams[i] = rand.Float64() } fmt.Println("Starting iterations.") //进行迭代更新 for i := 0; i < iteration; i++ { //伪造数据的batch计数器 fakeDataIndex := 0 //使用worker进行并发处理 var wg sync.WaitGroup for w := 0; w < workerNumber; w++ { wg.Add(1) //启动worker协程 go func() { for j := 0; j < batchSize*2 && fakeDataIndex < fakeTotal; j++ { if j < batchSize { //使用生成器生成伪造数据 fakeData[fakeDataIndex] = generate(fakeDataIndex) } //使用判别器进行分类 var prob float64 if rand.Intn(2) == 0 { //使用真实数据作为输入 prob = discriminatorParams[realData[rand.Intn(realTotal)]] } else { //使用伪造数据作为输入 prob = discriminatorParams[fakeData[fakeDataIndex]] } //计算loss并更新参数 delta := 0.0 if j < batchSize { delta = (1 - prob) * learningRate generatorParams[fakeData[fakeDataIndex]] += delta } else { delta = (-prob) * learningRate discriminatorParams[realData[rand.Intn(realTotal)]] -= delta discriminatorParams[fakeData[fakeDataIndex]] += delta } //缓存loss的计算结果 key := fmt.Sprintf("loss_%d_%d", i, fakeDataIndex) cached(key, func() interface{} { return ((1-prob)*(1-prob))*learningRate*learningRate + delta*delta }) fakeDataIndex++ } wg.Done() }() } wg.Wait() //缓存模型参数的计算结果 for j := range generatorParams { key := fmt.Sprintf("generator_%d_%d", i, j) cached(key, func() interface{} { return generatorParams[j] }) } for j := range discriminatorParams { key := fmt.Sprintf("discriminator_%d_%d", i, j) cached(key, func() interface{} { return discriminatorParams[j] }) } fmt.Printf("Iteration %d finished. ", i) } }
In this code example, we use the caching mechanism to optimize the repeated calculations required in GAN. In the generate function, we use the cached function to cache the calculation results of the forged data. In the for loop, we also use the cached function to cache the calculation results of the loss function and model parameters.
Conclusion
The caching mechanism can significantly improve the computing efficiency of GAN and has been widely used in practice. In Golang, we can use simple map structures and Mutex to implement the caching mechanism and apply it to the GAN calculation process. Through the sample code in this article, I believe readers can already grasp how to implement an efficient caching mechanism in Golang.
The above is the detailed content of A caching mechanism to implement efficient generative adversarial network algorithms in Golang.. For more information, please follow other related articles on the PHP Chinese website!

go语言有缩进。在go语言中,缩进直接使用gofmt工具格式化即可(gofmt使用tab进行缩进);gofmt工具会以标准样式的缩进和垂直对齐方式对源代码进行格式化,甚至必要情况下注释也会重新格式化。

go语言叫go的原因:想表达这门语言的运行速度、开发速度、学习速度(develop)都像gopher一样快。gopher是一种生活在加拿大的小动物,go的吉祥物就是这个小动物,它的中文名叫做囊地鼠,它们最大的特点就是挖洞速度特别快,当然可能不止是挖洞啦。

本篇文章带大家了解一下golang 的几种常用的基本数据类型,如整型,浮点型,字符,字符串,布尔型等,并介绍了一些常用的类型转换操作。

是,TiDB采用go语言编写。TiDB是一个分布式NewSQL数据库;它支持水平弹性扩展、ACID事务、标准SQL、MySQL语法和MySQL协议,具有数据强一致的高可用特性。TiDB架构中的PD储存了集群的元信息,如key在哪个TiKV节点;PD还负责集群的负载均衡以及数据分片等。PD通过内嵌etcd来支持数据分布和容错;PD采用go语言编写。

go语言需要编译。Go语言是编译型的静态语言,是一门需要编译才能运行的编程语言,也就说Go语言程序在运行之前需要通过编译器生成二进制机器码(二进制的可执行文件),随后二进制文件才能在目标机器上运行。

在写 Go 的过程中经常对比这两种语言的特性,踩了不少坑,也发现了不少有意思的地方,下面本篇就来聊聊 Go 自带的 HttpClient 的超时机制,希望对大家有所帮助。

删除map元素的两种方法:1、使用delete()函数从map中删除指定键值对,语法“delete(map, 键名)”;2、重新创建一个新的map对象,可以清空map中的所有元素,语法“var mapname map[keytype]valuetype”。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

SublimeText3 Linux new version
SublimeText3 Linux latest version
