Cache lazy loading in Java caching technology
In the Java circle, caching technology is a very common technology. The purpose of caching is to improve the performance of data access and avoid repeated calculations and repeated requests. Caching technology has a wide range of application scenarios, especially in applications that require frequent access to data, such as e-commerce websites, news portals, social applications, etc.
However, caching technology also has some disadvantages, such as: cache initialization and update may consume a lot of time and performance resources. Therefore, in order to improve the performance and efficiency of cache, a technology called "cache lazy loading" has emerged, which can effectively solve the problem of cache initialization and update, thereby improving system performance and efficiency.
What is cache lazy loading?
Cache lazy loading means delaying the initialization of cached data and waiting for the first access before loading the data into the cache. The advantage of this technology is that it can avoid unnecessary initialization and update operations, thereby reducing system overhead and resource consumption. Of course, the disadvantage of cache lazy loading is that it may cause some delay during the first access, but in most application scenarios, this delay is acceptable. Therefore, cache lazy loading technology is a very common technology in many applications.
How to implement cache lazy loading
In Java, there are many ways to implement cache lazy loading. Here we introduce several common implementation methods.
Method 1: Use ConcurrentHashMap and Future to implement
ConcurrentHashMap is a thread-safe hash table introduced in JDK 1.5, which can be used to store cached data, while Future can be used to load data asynchronously.
The specific implementation method is as follows:
public class MyCache { private final Map<String, Future<String>> cache = new ConcurrentHashMap<>(); private final Function<String, String> loadDataFunction; public MyCache(Function<String, String> loadDataFunction) { this.loadDataFunction = loadDataFunction; } public String getData(String key) throws ExecutionException, InterruptedException { Future<String> future = cache.get(key); if (future == null) { Callable<String> callable = () -> loadDataFunction.apply(key); FutureTask<String> futureTask = new FutureTask<>(callable); future = cache.putIfAbsent(key, futureTask); if (future == null) { future = futureTask; futureTask.run(); } } return future.get(); } }
This implementation method is relatively simple, and the general process is as follows:
- Try to obtain the Future value of the specified key from the cache;
- If the Future value is null, it means that the corresponding data has not been cached, load the data through loadDataFunction, encapsulate it into a FutureTask object, and insert it into the cache;
- If the insertion is successful (that is, before If no other thread has inserted the key), run the FutureTask to load the data asynchronously;
- Finally, return the Future value corresponding to the specified key in the cache.
Method 2: Use Double-Checked Locking to achieve
Double-Checked Locking is a common multi-threaded programming technique that can avoid repeated lock competition and thus improve system performance. In cache lazy loading, you can use the Double-Checked Locking technique to achieve the effect of delayed initialization.
The specific implementation method is as follows:
public class MyCache { private Map<String, String> cache = null; public String getData(String key) { String data = cache.get(key); if (data == null) { synchronized (this) { data = cache.get(key); if (data == null) { data = loadData(key); cache.put(key, data); } } } return data; } private String loadData(String key) { // TODO: load data from database or remote API return "data"; } }
This implementation method is relatively simple, and the general process is as follows:
- Try to obtain the value of the specified key from the cache;
- If the value is null, execute the synchronized code block;
- In the synchronized code block, try to obtain the cached data again. If it is still null, call the loadData method to load the data and store it in In cache;
- Finally, return the data corresponding to the specified key.
Method 3: Use AtomicReference to implement
AtomicReference is an atomic operation class introduced in JDK 1.5, which can be used to achieve the effect of cached lazy loading.
The specific implementation method is as follows:
public class MyCache { private final Map<String, String> cache = new ConcurrentHashMap<>(); private final AtomicReference<Map<String, String>> reference = new AtomicReference<>(null); public String getData(String key) { Map<String, String> currentCache = reference.get(); if (currentCache == null) { currentCache = cache; reference.compareAndSet(null, currentCache); } return currentCache.computeIfAbsent(key, k -> loadData(k)); } private String loadData(String key) { // TODO: load data from database or remote API return "data"; } }
This implementation method is relatively complicated. The approximate process is as follows:
- Try to read the cache data pointed to by the reference;
- If the cached data is null, read the data from ConcurrentHashMap and store it in AtomicReference as original data;
- Then, use the computeIfAbsent method to obtain the data corresponding to the specified key from the cached data;
- If the data corresponding to the specified key does not exist, call the loadData method to load the data, store it in the cache data, and return the data.
What are the benefits of using cached lazy loading?
Using cache lazy loading technology can bring the following benefits:
- Reduce initialization and update overhead and resource consumption;
- Avoid useless calculations and requests Operation;
- Improve the response speed and throughput of the system;
- Reduce the memory usage and overhead of the system;
- Improve the maintainability and scalability of the system.
Summary
In Java caching technology, cache lazy loading is a very practical technology. By delaying initialization of cached data, unnecessary calculations and request operations can be avoided, improving system performance and efficiency. This article introduces several common cache lazy loading implementation methods, hoping to help everyone understand and master Java caching technology more deeply.
The above is the detailed content of Cache lazy loading in Java caching technology. For more information, please follow other related articles on the PHP Chinese website!

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于结构化数据处理开源库SPL的相关问题,下面就一起来看一下java下理想的结构化数据处理类库,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于PriorityQueue优先级队列的相关知识,Java集合框架中提供了PriorityQueue和PriorityBlockingQueue两种类型的优先级队列,PriorityQueue是线程不安全的,PriorityBlockingQueue是线程安全的,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于java锁的相关问题,包括了独占锁、悲观锁、乐观锁、共享锁等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于多线程的相关问题,包括了线程安装、线程加锁与线程不安全的原因、线程安全的标准类等等内容,希望对大家有帮助。

本篇文章给大家带来了关于Java的相关知识,其中主要介绍了关于关键字中this和super的相关问题,以及他们的一些区别,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于枚举的相关问题,包括了枚举的基本操作、集合类对枚举的支持等等内容,下面一起来看一下,希望对大家有帮助。

封装是一种信息隐藏技术,是指一种将抽象性函式接口的实现细节部分包装、隐藏起来的方法;封装可以被认为是一个保护屏障,防止指定类的代码和数据被外部类定义的代码随机访问。封装可以通过关键字private,protected和public实现。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于设计模式的相关问题,主要将装饰器模式的相关内容,指在不改变现有对象结构的情况下,动态地给该对象增加一些职责的模式,希望对大家有帮助。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

SublimeText3 Linux new version
SublimeText3 Linux latest version

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

WebStorm Mac version
Useful JavaScript development tools

SublimeText3 English version
Recommended: Win version, supports code prompts!
