


In today's Internet era, the amount of data processing continues to increase. Single-machine data processing can no longer meet current needs, and distributed storage and computing have gradually become a trend. In distributed computing, distributed caching technology is one of the commonly used solutions, which can greatly improve system performance while ensuring data consistency. This article introduces the practice of using distributed caching technology to achieve data consistency in Golang.
1. What is distributed caching technology
Distributed caching technology refers to caching data on multiple servers to form a cache cluster. Multiple servers can share data through a cache cluster, and the cache cluster is often located behind a load balancer to achieve the effect of request offloading. Since the data exists on multiple servers, requests will be allocated to the corresponding servers for processing according to certain strategies, thus greatly improving concurrent processing capabilities. The most common technologies that can be used for distributed cache include Redis, Memcached, and Ehcache.
2. The practice of using distributed caching technology to achieve data consistency in Golang
When using Redis as a cache service in Golang, you can use the officially provided redigo package as a client for programming. In a distributed system, since data is distributed on different nodes, data on different nodes may be inconsistent. In order to solve this problem, atomic operations of distributed locks and cache layers need to be used. For example, when multiple requests need to write to the same cache, locking is required for serialization to prevent data errors.
The following introduces a code snippet that uses Golang and Redis to implement distributed caching technology.
package main import ( "fmt" "github.com/gomodule/redigo/redis" "sync" ) var pool *redis.Pool // 初始化连接池 func InitRedisPool(address string, password string) { pool = &redis.Pool{ MaxIdle: 3, MaxActive: 5, IdleTimeout: 300, Dial: func() (redis.Conn, error) { c, err := redis.Dial("tcp", address) if err != nil { return nil, err } if password != "" { if _, err := c.Do("AUTH", password); err != nil { c.Close() return nil, err } } return c, nil }, TestOnBorrow: func(c redis.Conn, t time.Time) error { _, err := c.Do("PING") return err }, } } // 加锁,防止多个请求写同一份数据产生不一致 func Lock(name string) { conn := pool.Get() defer conn.Close() for { locked, err := redis.Int(conn.Do("SETNX", name, 1)) if err != nil || locked == 1 { break } time.Sleep(time.Millisecond * 50) } } // 解锁,释放锁 func Unlock(name string) { conn := pool.Get() defer conn.Close() conn.Do("DEL", name) } // 获取数据 func GetDataFromCache(key string) (string, error) { conn := pool.Get() defer conn.Close() value, err := redis.String(conn.Do("GET", key)) if err != nil { return "", err } return value, nil } // 设置数据 func SetDataToCache(key string, value string) error { conn := pool.Get() defer conn.Close() _, err := conn.Do("SET", key, value) if err != nil { return err } return nil } func main() { InitRedisPool("localhost:6379", "") var wg sync.WaitGroup for i := 0; i < 10; i++ { wg.Add(1) go func(num int) { Lock("test") defer Unlock("test") value, err := GetDataFromCache("number") if err == nil { num, _ := strconv.Atoi(value) SetDataToCache("number", strconv.Itoa(num+1)) } wg.Done() }(i) } wg.Wait() number, _ := GetDataFromCache("number") fmt.Println("The number is", number) }
In the above code example, first use InitRedisPool to initialize the Redis connection pool to ensure that multiple requests reuse the same connection. Then the SET/GET operation for the Redis specified key is encapsulated in GetDataFromCache and SetDataToCache. When multiple requests write to the same cache at the same time, use Lock and Unlock to ensure concurrency safety and avoid data inconsistency.
3. Summary
Distributed caching technology can improve system performance while ensuring data consistency. Using Redis as a distributed cache service in Golang, you can use redigo as the client for programming. When multiple requests write to the same cache at the same time, distributed locks need to be used to ensure data consistency. As can be seen from the practical examples in this article, it is feasible to use distributed caching technology to achieve data consistency in Golang, and it is also one of the commonly used solutions.
The above is the detailed content of The practice of using distributed caching technology to achieve data consistency in Golang.. For more information, please follow other related articles on the PHP Chinese website!

go语言有缩进。在go语言中,缩进直接使用gofmt工具格式化即可(gofmt使用tab进行缩进);gofmt工具会以标准样式的缩进和垂直对齐方式对源代码进行格式化,甚至必要情况下注释也会重新格式化。

本篇文章带大家了解一下golang 的几种常用的基本数据类型,如整型,浮点型,字符,字符串,布尔型等,并介绍了一些常用的类型转换操作。

go语言叫go的原因:想表达这门语言的运行速度、开发速度、学习速度(develop)都像gopher一样快。gopher是一种生活在加拿大的小动物,go的吉祥物就是这个小动物,它的中文名叫做囊地鼠,它们最大的特点就是挖洞速度特别快,当然可能不止是挖洞啦。

是,TiDB采用go语言编写。TiDB是一个分布式NewSQL数据库;它支持水平弹性扩展、ACID事务、标准SQL、MySQL语法和MySQL协议,具有数据强一致的高可用特性。TiDB架构中的PD储存了集群的元信息,如key在哪个TiKV节点;PD还负责集群的负载均衡以及数据分片等。PD通过内嵌etcd来支持数据分布和容错;PD采用go语言编写。

在写 Go 的过程中经常对比这两种语言的特性,踩了不少坑,也发现了不少有意思的地方,下面本篇就来聊聊 Go 自带的 HttpClient 的超时机制,希望对大家有所帮助。

go语言需要编译。Go语言是编译型的静态语言,是一门需要编译才能运行的编程语言,也就说Go语言程序在运行之前需要通过编译器生成二进制机器码(二进制的可执行文件),随后二进制文件才能在目标机器上运行。

删除map元素的两种方法:1、使用delete()函数从map中删除指定键值对,语法“delete(map, 键名)”;2、重新创建一个新的map对象,可以清空map中的所有元素,语法“var mapname map[keytype]valuetype”。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Zend Studio 13.0.1
Powerful PHP integrated development environment

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),
