When developing an efficient and stable system, caching is an indispensable optimization method. One of the most common caching algorithms is the LRU algorithm. The LRU algorithm is the "least recently used" algorithm. It can eliminate the least recently used elements by recording the usage of each element in the cache to maximize cache utilization efficiency. In Golang, the LRU cache algorithm can also be easily implemented.
This article will introduce in detail the implementation of the LRU cache algorithm in Golang, including how to use a doubly linked list and a hash table to implement it, how to update and eliminate the cache, and how to perform thread-safe operations.
- Using doubly linked lists and hash tables to implement the LRU caching algorithm
In Golang, doubly linked lists are a basic data structure that can easily implement the LRU caching algorithm. The specific implementation method is to encapsulate each element in the cache into a node and use a doubly linked list to manage these nodes. At the same time, a hash table (map) is used to record the location of each node to facilitate quick search and update.
The following is the basic code structure for implementing the LRU cache algorithm in Golang:
type Node struct { Key int Val int Prev *Node Next *Node } type LRUCache struct { Size int Capacity int Cache map[int]*Node Head, Tail *Node } func Constructor(capacity int) LRUCache { head, tail := &Node{}, &Node{} head.Next, tail.Prev = tail, head return LRUCache{ Cache: make(map[int]*Node), Capacity: capacity, Size: 0, Head: head, Tail: tail, } } func (l *LRUCache) Get(key int) int { if node, ok := l.Cache[key]; ok { l.MoveToHead(node) return node.Val } return -1 } func (l *LRUCache) Put(key, val int) { if node, ok := l.Cache[key]; ok { node.Val = val l.MoveToHead(node) return } node := &Node{Key: key, Val: val} l.Cache[key] = node l.AddToHead(node) l.Size++ if l.Size > l.Capacity { removed := l.RemoveTail() delete(l.Cache, removed.Key) l.Size-- } } func (l *LRUCache) MoveToHead(node *Node) { l.RemoveNode(node) l.AddToHead(node) } func (l *LRUCache) RemoveNode(node *Node) { node.Prev.Next = node.Next node.Next.Prev = node.Prev } func (l *LRUCache) AddToHead(node *Node) { node.Prev = l.Head node.Next = l.Head.Next l.Head.Next.Prev = node l.Head.Next = node } func (l *LRUCache) RemoveTail() *Node { node := l.Tail.Prev l.RemoveNode(node) return node }
In the above code, LRUCache
is a structure containing a Cache
Hash table, a Head
pointer and a Tail
pointer, used to record the head and tail nodes of the doubly linked list and the position of each element in the cache. Among them, the key of the Cache
hash table is the key of the element, and the value is the node pointer of the element; Head
points to the head node of the doubly linked list, and Tail
points to the tail node. . Size
indicates the number of elements in the current cache, and Capacity
indicates the maximum capacity of the cache.
In the Constructor
function, we initialize an empty doubly linked list and return a LRUCache
structure. In the Get
function, we first determine whether the specified element exists in the cache. If it exists, move the element to the head of the linked list and return its value; otherwise, return -1. In the Put
function, we first determine whether the specified element exists in the cache. If it exists, update the value of the element and move it to the head; otherwise, add a new element and add it to the head. If the cache size exceeds the maximum capacity, the least recently used element is removed and removed from the hash table.
MoveToHead
, RemoveNode
, AddToHead
and RemoveTail
respectively correspond to the node movement and deletion operations of the doubly linked list, specifically The implementation is given in the code.
- Update and Eliminate Cache
When using the LRU cache algorithm, it is necessary to ensure that the access sequence of elements in the cache is arranged in the most recently used time order. Whenever an element is read or updated from the cache, it needs to be moved to the head of the linked list; at the same time, when the cache size exceeds the maximum capacity, the least recently used element, that is, the last element in the linked list, needs to be eliminated.
The following is the implementation of the MoveToHead
function:
func (l *LRUCache) MoveToHead(node *Node) { l.RemoveNode(node) l.AddToHead(node) }
MoveToHead
The function accepts a pointer to the cache node node
as Parameters, first delete the node from the linked list, and then add the node to the head of the linked list.
The following is the implementation of the RemoveTail
function:
func (l *LRUCache) RemoveTail() *Node { node := l.Tail.Prev l.RemoveNode(node) return node }
RemoveTail
The function returns the last node in the linked list and removes the node from the linked list delete.
- Thread-safe operation
In a multi-threaded environment, it is necessary to ensure the thread safety of LRU cache operations. To do this, we can use the mutex provided in the sync package. The specific method is to add mutex lock operations to functions that require cache operations to avoid simultaneous read and write operations on the cache. The following is the code structure for implementing the thread-safe version of the LRU cache algorithm in Golang:
type LRUCache struct { Size int Capacity int Cache map[int]*Node Head, Tail *Node Mutex sync.Mutex } func (l *LRUCache) Get(key int) int { l.Mutex.Lock() defer l.Mutex.Unlock() ... } func (l *LRUCache) Put(key, val int) { l.Mutex.Lock() defer l.Mutex.Unlock() ... } ...
In the above code, we added a Mutex
to the structure LRUCache
Member for synchronizing mutexes on cache operations. Before doing any caching operation, we need to obtain the mutex lock. In any case, whether reading or modifying the cache, we need to release the mutex.
- Summary
This article introduces the implementation of the LRU cache algorithm in Golang, including the use of a doubly linked list and a hash table to implement it, cache update and elimination, and Thread safe operation. The LRU cache algorithm is a simple and efficient cache algorithm that is widely used in actual development. When using Golang to write cache applications, you can use the LRU cache algorithm to improve system performance and stability according to actual needs.
The above is the detailed content of Detailed analysis of the LRU cache algorithm in Golang.. For more information, please follow other related articles on the PHP Chinese website!

go语言有缩进。在go语言中,缩进直接使用gofmt工具格式化即可(gofmt使用tab进行缩进);gofmt工具会以标准样式的缩进和垂直对齐方式对源代码进行格式化,甚至必要情况下注释也会重新格式化。

go语言叫go的原因:想表达这门语言的运行速度、开发速度、学习速度(develop)都像gopher一样快。gopher是一种生活在加拿大的小动物,go的吉祥物就是这个小动物,它的中文名叫做囊地鼠,它们最大的特点就是挖洞速度特别快,当然可能不止是挖洞啦。

本篇文章带大家了解一下golang 的几种常用的基本数据类型,如整型,浮点型,字符,字符串,布尔型等,并介绍了一些常用的类型转换操作。

是,TiDB采用go语言编写。TiDB是一个分布式NewSQL数据库;它支持水平弹性扩展、ACID事务、标准SQL、MySQL语法和MySQL协议,具有数据强一致的高可用特性。TiDB架构中的PD储存了集群的元信息,如key在哪个TiKV节点;PD还负责集群的负载均衡以及数据分片等。PD通过内嵌etcd来支持数据分布和容错;PD采用go语言编写。

在写 Go 的过程中经常对比这两种语言的特性,踩了不少坑,也发现了不少有意思的地方,下面本篇就来聊聊 Go 自带的 HttpClient 的超时机制,希望对大家有所帮助。

go语言需要编译。Go语言是编译型的静态语言,是一门需要编译才能运行的编程语言,也就说Go语言程序在运行之前需要通过编译器生成二进制机器码(二进制的可执行文件),随后二进制文件才能在目标机器上运行。

删除map元素的两种方法:1、使用delete()函数从map中删除指定键值对,语法“delete(map, 键名)”;2、重新创建一个新的map对象,可以清空map中的所有元素,语法“var mapname map[keytype]valuetype”。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Dreamweaver CS6
Visual web development tools

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool
