search
HomeBackend DevelopmentGolangDetailed analysis of the LRU cache algorithm in Golang.
Detailed analysis of the LRU cache algorithm in Golang.Jun 19, 2023 pm 08:28 PM
golanglru cache algorithmDetailed analysis

When developing an efficient and stable system, caching is an indispensable optimization method. One of the most common caching algorithms is the LRU algorithm. The LRU algorithm is the "least recently used" algorithm. It can eliminate the least recently used elements by recording the usage of each element in the cache to maximize cache utilization efficiency. In Golang, the LRU cache algorithm can also be easily implemented.

This article will introduce in detail the implementation of the LRU cache algorithm in Golang, including how to use a doubly linked list and a hash table to implement it, how to update and eliminate the cache, and how to perform thread-safe operations.

  1. Using doubly linked lists and hash tables to implement the LRU caching algorithm

In Golang, doubly linked lists are a basic data structure that can easily implement the LRU caching algorithm. The specific implementation method is to encapsulate each element in the cache into a node and use a doubly linked list to manage these nodes. At the same time, a hash table (map) is used to record the location of each node to facilitate quick search and update.

The following is the basic code structure for implementing the LRU cache algorithm in Golang:

type Node struct {
    Key  int
    Val  int
    Prev *Node
    Next *Node
}

type LRUCache struct {
    Size       int
    Capacity   int
    Cache      map[int]*Node
    Head, Tail *Node
}

func Constructor(capacity int) LRUCache {
    head, tail := &Node{}, &Node{}
    head.Next, tail.Prev = tail, head
    return LRUCache{
        Cache:     make(map[int]*Node),
        Capacity:  capacity,
        Size:      0,
        Head:      head,
        Tail:      tail,
    }
}

func (l *LRUCache) Get(key int) int {
    if node, ok := l.Cache[key]; ok {
        l.MoveToHead(node)
        return node.Val
    }
    return -1
}

func (l *LRUCache) Put(key, val int) {
    if node, ok := l.Cache[key]; ok {
        node.Val = val
        l.MoveToHead(node)
        return
    }
    node := &Node{Key: key, Val: val}
    l.Cache[key] = node
    l.AddToHead(node)
    l.Size++
    if l.Size > l.Capacity {
        removed := l.RemoveTail()
        delete(l.Cache, removed.Key)
        l.Size--
    }
}

func (l *LRUCache) MoveToHead(node *Node) {
    l.RemoveNode(node)
    l.AddToHead(node)
}

func (l *LRUCache) RemoveNode(node *Node) {
    node.Prev.Next = node.Next
    node.Next.Prev = node.Prev
}

func (l *LRUCache) AddToHead(node *Node) {
    node.Prev = l.Head
    node.Next = l.Head.Next
    l.Head.Next.Prev = node
    l.Head.Next = node
}

func (l *LRUCache) RemoveTail() *Node {
    node := l.Tail.Prev
    l.RemoveNode(node)
    return node
}

In the above code, LRUCache is a structure containing a CacheHash table, a Head pointer and a Tail pointer, used to record the head and tail nodes of the doubly linked list and the position of each element in the cache. Among them, the key of the Cache hash table is the key of the element, and the value is the node pointer of the element; Head points to the head node of the doubly linked list, and Tail points to the tail node. . Size indicates the number of elements in the current cache, and Capacity indicates the maximum capacity of the cache.

In the Constructor function, we initialize an empty doubly linked list and return a LRUCache structure. In the Get function, we first determine whether the specified element exists in the cache. If it exists, move the element to the head of the linked list and return its value; otherwise, return -1. In the Put function, we first determine whether the specified element exists in the cache. If it exists, update the value of the element and move it to the head; otherwise, add a new element and add it to the head. If the cache size exceeds the maximum capacity, the least recently used element is removed and removed from the hash table.

MoveToHead, RemoveNode, AddToHead and RemoveTail respectively correspond to the node movement and deletion operations of the doubly linked list, specifically The implementation is given in the code.

  1. Update and Eliminate Cache

When using the LRU cache algorithm, it is necessary to ensure that the access sequence of elements in the cache is arranged in the most recently used time order. Whenever an element is read or updated from the cache, it needs to be moved to the head of the linked list; at the same time, when the cache size exceeds the maximum capacity, the least recently used element, that is, the last element in the linked list, needs to be eliminated.

The following is the implementation of the MoveToHead function:

func (l *LRUCache) MoveToHead(node *Node) {
    l.RemoveNode(node)
    l.AddToHead(node)
}

MoveToHeadThe function accepts a pointer to the cache node node as Parameters, first delete the node from the linked list, and then add the node to the head of the linked list.

The following is the implementation of the RemoveTail function:

func (l *LRUCache) RemoveTail() *Node {
    node := l.Tail.Prev
    l.RemoveNode(node)
    return node
}

RemoveTailThe function returns the last node in the linked list and removes the node from the linked list delete.

  1. Thread-safe operation

In a multi-threaded environment, it is necessary to ensure the thread safety of LRU cache operations. To do this, we can use the mutex provided in the sync package. The specific method is to add mutex lock operations to functions that require cache operations to avoid simultaneous read and write operations on the cache. The following is the code structure for implementing the thread-safe version of the LRU cache algorithm in Golang:

type LRUCache struct {
    Size       int
    Capacity   int
    Cache      map[int]*Node
    Head, Tail *Node
    Mutex      sync.Mutex
}

func (l *LRUCache) Get(key int) int {
    l.Mutex.Lock()
    defer l.Mutex.Unlock()

    ...
}

func (l *LRUCache) Put(key, val int) {
    l.Mutex.Lock()
    defer l.Mutex.Unlock()

    ...
}

...

In the above code, we added a Mutex to the structure LRUCache Member for synchronizing mutexes on cache operations. Before doing any caching operation, we need to obtain the mutex lock. In any case, whether reading or modifying the cache, we need to release the mutex.

  1. Summary

This article introduces the implementation of the LRU cache algorithm in Golang, including the use of a doubly linked list and a hash table to implement it, cache update and elimination, and Thread safe operation. The LRU cache algorithm is a simple and efficient cache algorithm that is widely used in actual development. When using Golang to write cache applications, you can use the LRU cache algorithm to improve system performance and stability according to actual needs.

The above is the detailed content of Detailed analysis of the LRU cache algorithm in Golang.. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
go语言有没有缩进go语言有没有缩进Dec 01, 2022 pm 06:54 PM

go语言有缩进。在go语言中,缩进直接使用gofmt工具格式化即可(gofmt使用tab进行缩进);gofmt工具会以标准样式的缩进和垂直对齐方式对源代码进行格式化,甚至必要情况下注释也会重新格式化。

go语言为什么叫gogo语言为什么叫goNov 28, 2022 pm 06:19 PM

go语言叫go的原因:想表达这门语言的运行速度、开发速度、学习速度(develop)都像gopher一样快。gopher是一种生活在加拿大的小动物,go的吉祥物就是这个小动物,它的中文名叫做囊地鼠,它们最大的特点就是挖洞速度特别快,当然可能不止是挖洞啦。

聊聊Golang中的几种常用基本数据类型聊聊Golang中的几种常用基本数据类型Jun 30, 2022 am 11:34 AM

本篇文章带大家了解一下golang 的几种常用的基本数据类型,如整型,浮点型,字符,字符串,布尔型等,并介绍了一些常用的类型转换操作。

一文详解Go中的并发【20 张动图演示】一文详解Go中的并发【20 张动图演示】Sep 08, 2022 am 10:48 AM

Go语言中各种并发模式看起来是怎样的?下面本篇文章就通过20 张动图为你演示 Go 并发,希望对大家有所帮助!

tidb是go语言么tidb是go语言么Dec 02, 2022 pm 06:24 PM

是,TiDB采用go语言编写。TiDB是一个分布式NewSQL数据库;它支持水平弹性扩展、ACID事务、标准SQL、MySQL语法和MySQL协议,具有数据强一致的高可用特性。TiDB架构中的PD储存了集群的元信息,如key在哪个TiKV节点;PD还负责集群的负载均衡以及数据分片等。PD通过内嵌etcd来支持数据分布和容错;PD采用go语言编写。

聊聊Golang自带的HttpClient超时机制聊聊Golang自带的HttpClient超时机制Nov 18, 2022 pm 08:25 PM

​在写 Go 的过程中经常对比这两种语言的特性,踩了不少坑,也发现了不少有意思的地方,下面本篇就来聊聊 Go 自带的 HttpClient 的超时机制,希望对大家有所帮助。

go语言是否需要编译go语言是否需要编译Dec 01, 2022 pm 07:06 PM

go语言需要编译。Go语言是编译型的静态语言,是一门需要编译才能运行的编程语言,也就说Go语言程序在运行之前需要通过编译器生成二进制机器码(二进制的可执行文件),随后二进制文件才能在目标机器上运行。

golang map怎么删除元素golang map怎么删除元素Dec 08, 2022 pm 06:26 PM

删除map元素的两种方法:1、使用delete()函数从map中删除指定键值对,语法“delete(map, 键名)”;2、重新创建一个新的map对象,可以清空map中的所有元素,语法“var mapname map[keytype]valuetype”。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool