


With the continuous development of Internet applications, databases have become the core component of various Internet applications. As one of the most popular relational databases today, MySQL is widely used in various Internet applications. For large amounts of data processing, it is often necessary to divide the data into internal segments to improve the operating efficiency of the program and reduce the pressure on the database. This article will introduce how to process internal segmentation of data in MySQL database and Go language.
1. Partitioning of MySQL database
Partitioning of MySQL database is a method of splitting a large table into multiple small tables. Each small table becomes a partition, and each partition stores a different range. The data. The partitioning of the MySQL database improves the query efficiency of the database and also reduces the burden on the database. System performance can be improved by horizontally expanding the database server, and the partition range can also be reduced to ensure data security and improve query efficiency.
MySQL database supports multiple partitioning methods:
- Hash partitioning: The data is partitioned through the hash algorithm, ensuring that the data stored in each partition is basically the same.
- Range partitioning: Partition based on the range or value range of the data.
- Column partitioning: Partition the data according to the value of the column.
- Column list partitioning: The values of multiple columns jointly partition the data.
- Game partition: Distribute the table equally to each server according to the primary key range of each partition, so that the amount of data on each server is roughly the same.
2. Grouping of Go language
In Go language, data grouping can be achieved through slice and map. Among them, slice is an ordered collection type that can be read and written based on the index of the data; map is an unordered key-value pair collection type that can be read and written based on the key.
- slice grouping
Slice grouping needs to be traversed using a for loop, grouped by finding the remainder of the number of each element, and then saving the grouped data in a new slice. The specific implementation is as follows:
func sliceGrouping(n int, sliceData []int) [][]int { grouping := make([][]int, n) // 新建n个[]int切片,用于存放分组后的数据 for _, v := range sliceData { // 遍历切片数据 index := v % n // 对每个元素编号求余数 grouping[index] = append(grouping[index], v) // 将元素添加到对应切片中 } return grouping }
- map grouping
Map grouping also needs to be traversed through a for loop, but since map is a key-value pair collection type, the elements can be directly Add to the corresponding map. The specific implementation is as follows:
func mapGrouping(n int, mapData map[string]int) map[string][]int { grouping := make(map[string][]int) // 新建一个map,用于存放分组后的数据 for k, v := range mapData { // 遍历map数据 index := v % n // 对每个元素编号求余数 grouping[string(index)] = append(grouping[string(index)], v) // 将元素添加到对应map中 } return grouping }
3. Internal segmentation processing of data
In practical applications, data often needs to be divided and processed to improve the operating efficiency of the program. For example, in a large table containing 10,000 records, when performing query operations, the data can be divided into 10 partitions, each containing 1,000 records. This can effectively improve query efficiency and reduce the pressure on the database. In the MySQL database, this function can be achieved through partition operations; in the Go language, data can be grouped through slice and map.
The following is a comprehensive example. First, create a table named test in the MySQL database, then divide the table into three partitions through hash partitioning, and finally query and process the partitioned data in the Go language.
- Create test table and partition:
CREATE TABLE test ( id INT NOT NULL AUTO_INCREMENT, name VARCHAR(50) NOT NULL, age INT NOT NULL, PRIMARY KEY (id) ) PARTITION BY HASH (id) PARTITIONS 3; -- 将表分为3个分区
- Query partition data and process in Go language:
func main() { db, err := sql.Open("mysql", "root:123456@tcp(127.0.0.1:3306)/test") // 连接数据库 if err != nil { panic(err.Error()) } defer db.Close() rows, err := db.Query("SELECT * FROM test") // 查询数据 if err != nil { panic(err.Error()) } defer rows.Close() data := make(map[string][]int) // 新建一个map,用于存放分区数据 for rows.Next() { // 遍历查询结果 var id, age int var name string err = rows.Scan(&id, &name, &age) if err != nil { panic(err.Error()) } index := id % 3 // 对每条记录的id编号求余数 data[string(index)] = append(data[string(index)], id) // 将记录添加到对应的map中 } fmt.Println(data) // 输出分区数据 }
above In the example, we first created a test table and divided it into three partitions. Then we queried all the records in the test table in Go language and divided the records into three partitions based on the remainder of the id number. Finally, the partition data is output. Through the above examples, we can see that it is very convenient to perform data segmentation processing in the MySQL database and Go language.
The above is the detailed content of MySQL database and Go language: How to perform internal segmentation processing of data?. For more information, please follow other related articles on the PHP Chinese website!

go语言有缩进。在go语言中,缩进直接使用gofmt工具格式化即可(gofmt使用tab进行缩进);gofmt工具会以标准样式的缩进和垂直对齐方式对源代码进行格式化,甚至必要情况下注释也会重新格式化。

go语言叫go的原因:想表达这门语言的运行速度、开发速度、学习速度(develop)都像gopher一样快。gopher是一种生活在加拿大的小动物,go的吉祥物就是这个小动物,它的中文名叫做囊地鼠,它们最大的特点就是挖洞速度特别快,当然可能不止是挖洞啦。

是,TiDB采用go语言编写。TiDB是一个分布式NewSQL数据库;它支持水平弹性扩展、ACID事务、标准SQL、MySQL语法和MySQL协议,具有数据强一致的高可用特性。TiDB架构中的PD储存了集群的元信息,如key在哪个TiKV节点;PD还负责集群的负载均衡以及数据分片等。PD通过内嵌etcd来支持数据分布和容错;PD采用go语言编写。

go语言能编译。Go语言是编译型的静态语言,是一门需要编译才能运行的编程语言。对Go语言程序进行编译的命令有两种:1、“go build”命令,可以将Go语言程序代码编译成二进制的可执行文件,但该二进制文件需要手动运行;2、“go run”命令,会在编译后直接运行Go语言程序,编译过程中会产生一个临时文件,但不会生成可执行文件。

go语言需要编译。Go语言是编译型的静态语言,是一门需要编译才能运行的编程语言,也就说Go语言程序在运行之前需要通过编译器生成二进制机器码(二进制的可执行文件),随后二进制文件才能在目标机器上运行。

删除map元素的两种方法:1、使用delete()函数从map中删除指定键值对,语法“delete(map, 键名)”;2、重新创建一个新的map对象,可以清空map中的所有元素,语法“var mapname map[keytype]valuetype”。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

Dreamweaver CS6
Visual web development tools

WebStorm Mac version
Useful JavaScript development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software
