


Python, as a high-level programming language, has become one of the mainstream choices for web development. However, with the rapid development of the Internet, the data volume and concurrency of web applications are getting higher and higher, which makes the performance of web applications become an important issue. In order to meet business needs and user experience, asynchronous IO performance optimization techniques in Python web development have increasingly become a research hotspot.
Introduction to asynchronous IO
Asynchronous IO refers to the use of non-blocking IO operations in a single thread, and leaves the IO operations to the operating system to complete, in order to process multiple IO requests in the same thread. Purpose. In other words, asynchronous IO processing does not require multi-process, multi-thread and other multi-tasking methods.
Asynchronous IO principle
In Python, asynchronous IO is usually implemented through coroutines. Coroutine is called a lightweight thread that implements alternate execution of multiple tasks through suspension and recovery. In coroutines, we can use asynchronous optimization of IO operations to improve the performance of web applications.
As for coroutines, it is a difficult concept to understand. Here is a simple coroutine example:
import asyncio async def my_coroutine(): print('开始执行协程...') await asyncio.sleep(1) print('协程执行完毕 !') async def main(): # 第一个协程 coro1 = my_coroutine() # 第二个协程 coro2 = my_coroutine() print("开始执行两个协程...") await coro1 await coro2 # 实例化一个事件循环 loop = asyncio.get_event_loop() # 执行主协程 loop.run_until_complete(main())
As you can see, in the above example, we created two coroutine objects, Hand them over to the event loop for execution. The event loop can be regarded as a central scheduler that can control the execution sequence and switching of coroutines.
The biggest feature of coroutines and asynchronous IO is that it can "pause" and wait at the IO operation, wait until the IO operation returns the result, and then "wake up" to continue executing subsequent code, so as to avoid the program from being interrupted during the IO operation. Blocking occurs, thereby improving program performance.
Asynchronous IO skills in Python web development
- Use an asynchronous non-blocking framework:
aiohttp
aiohttp
It is a Python web framework that supports asynchronous IO. It uses coroutines to implement efficient IO operations and can fully support HTTP/1.1 and WebSocket. This framework is easy to learn and can help developers implement fast asynchronous IO applications.
Some usage methods:
from aiohttp import web async def handle(request): # 获取get参数,即 ?name=test name = request.query.get('name', "Anonymous") text = "Hello, " + name # 返回Response对象 return web.Response(text=text) # 初始化web应用,创建一个app对象 app = web.Application() # 把URL路径'/'和函数句柄handle绑定到一起 app.add_routes([web.get('/', handle)]) # 启动web应用服务 if __name__ == '__main__': web.run_app(app, port=8080)
- Asynchronous optimization of IO-intensive tasks
I/O operations for website data tend to be more CPU-intensive than It is more time-consuming, so asynchronous optimization for IO-intensive tasks can significantly improve the performance of web applications. For example, the following sample code:
import aiohttp import asyncio async def fetch(session, url): async with session.get(url) as response: return await response.text() async def main(): async with aiohttp.ClientSession() as session: tasks = [] for i in range(50): task = asyncio.create_task(fetch(session, f'https://jsonplaceholder.typicode.com/todos/{i}')) tasks.append(task) responses = await asyncio.gather(*tasks) # do something with responses... # 实例化一个事件循环 loop = asyncio.get_event_loop() # 执行异步任务 loop.run_until_complete(main())
In the above example, we used Python’s asynchronous library aiohttp
, and used coroutines to implement requests for 50 JSON data in the same thread, thus Efficient multi-task concurrent execution is achieved in a short period of time.
- Using an asynchronous database driver
Database operations are often one of the performance bottlenecks in web applications. We can use the asynchronous database driver provided in Python, such as aiomysql
, asyncpg
, etc., realize asynchronous operations on the database, thereby improving the performance of web applications.
import asyncio import aiomysql async def test_example(): async with aiomysql.create_pool(host='localhost', user='root', password='', db='test', charset='utf8mb4', autocommit=True) as pool: async with pool.acquire() as conn: async with conn.cursor() as cur: await cur.execute("select id, name from tb_user where id=1") result = await cur.fetchone() print(result) if __name__ == '__main__': # 实例化一个事件循环 loop = asyncio.get_event_loop() # 执行异步任务 loop.run_until_complete(test_example())
The above code shows how to use the aiomysql
library to perform asynchronous MySQL database operations. Since database operations are usually very slow, we usually use the async with
syntax structure to complete it. Coroutine control; if the code needs to perform multiple database operations, then we can use connection pooling and other methods to improve the performance of MySQL operations.
Summary
Asynchronous IO in Python can be said to be a major advantage in web development and can help us quickly implement efficient web applications. During the development process, we can use asynchronous non-blocking frameworks, concurrency optimization for IO-intensive tasks, and asynchronous database drivers to improve the performance of web applications.
The above is the detailed content of Asynchronous IO performance optimization skills in Python web development. For more information, please follow other related articles on the PHP Chinese website!

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

Dreamweaver Mac version
Visual web development tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

Atom editor mac version download
The most popular open source editor

SublimeText3 Linux new version
SublimeText3 Linux latest version
