


MySQL is a very popular relational database management system, and the Go language is a fast and efficient programming language that has excellent performance in many scenarios. This article will introduce how to use Go language to create high-performance MySQL data granular control, providing more efficient data reading and writing operations for your website or business system.
1. Use Go language to connect to MySQL
First, you need to use Go language to connect to the MySQL database. There are two main MySQL drivers available in Go language: Go-MySQL-Driver and MySQL Driver. For most cases, Go-MySQL-Driver is preferred because it has better performance and stability, while MySQL Driver does not handle Unicode characters as well as Go-MySQL-Driver. Depending on your needs, you can install Go-MySQL-Driver using the following command:
go get -u github.com/go-sql-driver/mysql
Next, you can use the following code to connect to the MySQL database:
import ( "database/sql" "fmt" _ "github.com/go-sql-driver/mysql" ) func main() { db, err := sql.Open("mysql", "username:password@tcp(127.0.0.1:3306)/dbname") if err != nil { panic(err.Error()) } defer db.Close() }
Where, "username" and "password" are the username and password you chose when creating the user in MySQL, and "dbname" is the name of the database you will be connecting to.
2. Use Go language to execute MySQL query
After connecting to the database, you can use Go language to execute MySQL query and obtain the returned results. The following are some basic MySQL query operation examples:
- Insert a record:
func createRecord(db *sql.DB, name string, age int) { stmt, err := db.Prepare("INSERT INTO users(name, age) VALUES(?, ?)") if err != nil { panic(err.Error()) } _, err = stmt.Exec(name, age) if err != nil { panic(err.Error()) } }
In this example, we use the Prepare and Exec functions to execute the insert command.
- Update a record:
func updateRecord(db *sql.DB, name string, age int, id int64) { stmt, err := db.Prepare("UPDATE users SET name=?, age=? WHERE id=?") if err != nil { panic(err.Error()) } _, err = stmt.Exec(name, age, id) if err != nil { panic(err.Error()) } }
In this example, we use the UPDATE statement to update a record, and use the Prepare and Exec functions to execute the command.
- Get a single record:
func getRecord(db *sql.DB, id int64) (string, int, error) { var name string var age int err := db.QueryRow("SELECT name, age FROM users WHERE id=?", id).Scan(&name, &age) if err != nil { return "", 0, err } return name, age, nil }
In this example, we use the QueryRow and Scan functions to obtain the data of a record.
- Get multiple records:
func getRecords(db *sql.DB) []User { var users []User rows, err := db.Query("SELECT name, age FROM users") if err != nil { panic(err.Error()) } defer rows.Close() for rows.Next() { var user User err := rows.Scan(&user.Name, &user.Age) if err != nil { panic(err.Error()) } users = append(users, user) } return users }
In this example, we use the Query function and the Scan function to get multiple pieces of data and save them in a slice return.
3. Use Go language for data granularity control
In actual business environments, we sometimes need to perform data granularity control to achieve better performance and data security. The following are some examples of data granularity control:
- Query for a given time range:
func queryUsersByTime(db *sql.DB, startTime, endTime string) []User { var users []User rows, err := db.Query("SELECT name, age FROM users WHERE created_at BETWEEN ? AND ?", startTime, endTime) if err != nil { panic(err.Error()) } defer rows.Close() for rows.Next() { var user User err := rows.Scan(&user.Name, &user.Age) if err != nil { panic(err.Error()) } users = append(users, user) } return users }
In this example, we use the BETWEEN operator to specify the time range, to query for users created within a specific time range.
- Query by group:
func queryUsersByGroup(db *sql.DB, age int) (int, error) { var count int err := db.QueryRow("SELECT COUNT(*) FROM users WHERE age=?", age).Scan(&count) if err != nil { return 0, err } return count, nil }
In this example, we use the COUNT function and WHERE clause to count the number of users of a specified age.
- Use index query:
func queryUsersByIndex(db *sql.DB, name string) []User { var users []User rows, err := db.Query("SELECT name, age FROM users WHERE name=?", name) if err != nil { panic(err.Error()) } defer rows.Close() for rows.Next() { var user User err := rows.Scan(&user.Name, &user.Age) if err != nil { panic(err.Error()) } users = append(users, user) } return users }
In this example, we use the index (name) to query all users with a given name.
Summary:
This article introduces how to use Go language to create high-performance MySQL data granular control. With these simple queries and controls, you can write more complex MySQL operations based on your specific needs and maximize the efficiency of the Go language. With granular data control, your website or business system can not only process data requests faster, but also store and manipulate sensitive data more securely.
The above is the detailed content of How to create high-performance MySQL data granular control using Go language. For more information, please follow other related articles on the PHP Chinese website!

本篇文章给大家带来了关于mysql的相关知识,其中主要介绍了关于架构原理的相关内容,MySQL Server架构自顶向下大致可以分网络连接层、服务层、存储引擎层和系统文件层,下面一起来看一下,希望对大家有帮助。

在mysql中,可以利用char()和REPLACE()函数来替换换行符;REPLACE()函数可以用新字符串替换列中的换行符,而换行符可使用“char(13)”来表示,语法为“replace(字段名,char(13),'新字符串') ”。

方法:1、利用right函数,语法为“update 表名 set 指定字段 = right(指定字段, length(指定字段)-1)...”;2、利用substring函数,语法为“select substring(指定字段,2)..”。

mysql的msi与zip版本的区别:1、zip包含的安装程序是一种主动安装,而msi包含的是被installer所用的安装文件以提交请求的方式安装;2、zip是一种数据压缩和文档存储的文件格式,msi是微软格式的安装包。

转换方法:1、利用cast函数,语法“select * from 表名 order by cast(字段名 as SIGNED)”;2、利用“select * from 表名 order by CONVERT(字段名,SIGNED)”语句。

本篇文章给大家带来了关于mysql的相关知识,其中主要介绍了关于MySQL复制技术的相关问题,包括了异步复制、半同步复制等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于mysql的相关知识,其中主要介绍了mysql高级篇的一些问题,包括了索引是什么、索引底层实现等等问题,下面一起来看一下,希望对大家有帮助。

在mysql中,可以利用REGEXP运算符判断数据是否是数字类型,语法为“String REGEXP '[^0-9.]'”;该运算符是正则表达式的缩写,若数据字符中含有数字时,返回的结果是true,反之返回的结果是false。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 Linux new version
SublimeText3 Linux latest version

Notepad++7.3.1
Easy-to-use and free code editor

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

Dreamweaver CS6
Visual web development tools
