search
HomeDatabaseMysql TutorialHow to create high-performance MySQL data granular control using Go language
How to create high-performance MySQL data granular control using Go languageJun 17, 2023 am 09:16 AM
mysqlgo languagehigh performance

MySQL is a very popular relational database management system, and the Go language is a fast and efficient programming language that has excellent performance in many scenarios. This article will introduce how to use Go language to create high-performance MySQL data granular control, providing more efficient data reading and writing operations for your website or business system.

1. Use Go language to connect to MySQL

First, you need to use Go language to connect to the MySQL database. There are two main MySQL drivers available in Go language: Go-MySQL-Driver and MySQL Driver. For most cases, Go-MySQL-Driver is preferred because it has better performance and stability, while MySQL Driver does not handle Unicode characters as well as Go-MySQL-Driver. Depending on your needs, you can install Go-MySQL-Driver using the following command:

go get -u github.com/go-sql-driver/mysql

Next, you can use the following code to connect to the MySQL database:

import (
    "database/sql"
    "fmt"
    _ "github.com/go-sql-driver/mysql"
)

func main() {
    db, err := sql.Open("mysql", "username:password@tcp(127.0.0.1:3306)/dbname")
    if err != nil {
        panic(err.Error())
    }
    defer db.Close()
}

Where, "username" and "password" are the username and password you chose when creating the user in MySQL, and "dbname" is the name of the database you will be connecting to.

2. Use Go language to execute MySQL query

After connecting to the database, you can use Go language to execute MySQL query and obtain the returned results. The following are some basic MySQL query operation examples:

  1. Insert a record:
func createRecord(db *sql.DB, name string, age int) {
    stmt, err := db.Prepare("INSERT INTO users(name, age) VALUES(?, ?)")
    if err != nil {
        panic(err.Error())
    }
    _, err = stmt.Exec(name, age)
    if err != nil {
        panic(err.Error())
    }
}

In this example, we use the Prepare and Exec functions to execute the insert command.

  1. Update a record:
func updateRecord(db *sql.DB, name string, age int, id int64) {
    stmt, err := db.Prepare("UPDATE users SET name=?, age=? WHERE id=?")
    if err != nil {
        panic(err.Error())
    }
    _, err = stmt.Exec(name, age, id)
    if err != nil {
        panic(err.Error())
    }
}

In this example, we use the UPDATE statement to update a record, and use the Prepare and Exec functions to execute the command.

  1. Get a single record:
func getRecord(db *sql.DB, id int64) (string, int, error) {
    var name string
    var age int
    err := db.QueryRow("SELECT name, age FROM users WHERE id=?", id).Scan(&name, &age)
    if err != nil {
        return "", 0, err
    }
    return name, age, nil
}

In this example, we use the QueryRow and Scan functions to obtain the data of a record.

  1. Get multiple records:
func getRecords(db *sql.DB) []User {
    var users []User
    rows, err := db.Query("SELECT name, age FROM users")
    if err != nil {
        panic(err.Error())
    }
    defer rows.Close()
 
    for rows.Next() {
        var user User
        err := rows.Scan(&user.Name, &user.Age)
        if err != nil {
            panic(err.Error())
        }
        users = append(users, user)
    }
    return users
}

In this example, we use the Query function and the Scan function to get multiple pieces of data and save them in a slice return.

3. Use Go language for data granularity control

In actual business environments, we sometimes need to perform data granularity control to achieve better performance and data security. The following are some examples of data granularity control:

  1. Query for a given time range:
func queryUsersByTime(db *sql.DB, startTime, endTime string) []User {
    var users []User
    rows, err := db.Query("SELECT name, age FROM users WHERE created_at BETWEEN ? AND ?", startTime, endTime)
    if err != nil {
        panic(err.Error())
    }
    defer rows.Close()
 
    for rows.Next() {
        var user User
        err := rows.Scan(&user.Name, &user.Age)
        if err != nil {
            panic(err.Error())
        }
        users = append(users, user)
    }
    return users
}

In this example, we use the BETWEEN operator to specify the time range, to query for users created within a specific time range.

  1. Query by group:
func queryUsersByGroup(db *sql.DB, age int) (int, error) {
    var count int
    err := db.QueryRow("SELECT COUNT(*) FROM users WHERE age=?", age).Scan(&count)
    if err != nil {
        return 0, err
    }
    return count, nil
}

In this example, we use the COUNT function and WHERE clause to count the number of users of a specified age.

  1. Use index query:
func queryUsersByIndex(db *sql.DB, name string) []User {
    var users []User
    rows, err := db.Query("SELECT name, age FROM users WHERE name=?", name)
    if err != nil {
        panic(err.Error())
    }
    defer rows.Close()
 
    for rows.Next() {
        var user User
        err := rows.Scan(&user.Name, &user.Age)
        if err != nil {
            panic(err.Error())
        }
        users = append(users, user)
    }
    return users
}

In this example, we use the index (name) to query all users with a given name.

Summary:

This article introduces how to use Go language to create high-performance MySQL data granular control. With these simple queries and controls, you can write more complex MySQL operations based on your specific needs and maximize the efficiency of the Go language. With granular data control, your website or business system can not only process data requests faster, but also store and manipulate sensitive data more securely.

The above is the detailed content of How to create high-performance MySQL data granular control using Go language. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
图文详解mysql架构原理图文详解mysql架构原理May 17, 2022 pm 05:54 PM

本篇文章给大家带来了关于mysql的相关知识,其中主要介绍了关于架构原理的相关内容,MySQL Server架构自顶向下大致可以分网络连接层、服务层、存储引擎层和系统文件层,下面一起来看一下,希望对大家有帮助。

mysql怎么替换换行符mysql怎么替换换行符Apr 18, 2022 pm 03:14 PM

在mysql中,可以利用char()和REPLACE()函数来替换换行符;REPLACE()函数可以用新字符串替换列中的换行符,而换行符可使用“char(13)”来表示,语法为“replace(字段名,char(13),'新字符串') ”。

mysql怎么去掉第一个字符mysql怎么去掉第一个字符May 19, 2022 am 10:21 AM

方法:1、利用right函数,语法为“update 表名 set 指定字段 = right(指定字段, length(指定字段)-1)...”;2、利用substring函数,语法为“select substring(指定字段,2)..”。

mysql的msi与zip版本有什么区别mysql的msi与zip版本有什么区别May 16, 2022 pm 04:33 PM

mysql的msi与zip版本的区别:1、zip包含的安装程序是一种主动安装,而msi包含的是被installer所用的安装文件以提交请求的方式安装;2、zip是一种数据压缩和文档存储的文件格式,msi是微软格式的安装包。

mysql怎么将varchar转换为int类型mysql怎么将varchar转换为int类型May 12, 2022 pm 04:51 PM

转换方法:1、利用cast函数,语法“select * from 表名 order by cast(字段名 as SIGNED)”;2、利用“select * from 表名 order by CONVERT(字段名,SIGNED)”语句。

MySQL复制技术之异步复制和半同步复制MySQL复制技术之异步复制和半同步复制Apr 25, 2022 pm 07:21 PM

本篇文章给大家带来了关于mysql的相关知识,其中主要介绍了关于MySQL复制技术的相关问题,包括了异步复制、半同步复制等等内容,下面一起来看一下,希望对大家有帮助。

带你把MySQL索引吃透了带你把MySQL索引吃透了Apr 22, 2022 am 11:48 AM

本篇文章给大家带来了关于mysql的相关知识,其中主要介绍了mysql高级篇的一些问题,包括了索引是什么、索引底层实现等等问题,下面一起来看一下,希望对大家有帮助。

mysql怎么判断是否是数字类型mysql怎么判断是否是数字类型May 16, 2022 am 10:09 AM

在mysql中,可以利用REGEXP运算符判断数据是否是数字类型,语法为“String REGEXP '[^0-9.]'”;该运算符是正则表达式的缩写,若数据字符中含有数字时,返回的结果是true,反之返回的结果是false。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools