Image style transfer is a technology based on deep learning that can transfer the style of one image to another image. In recent years, image style transfer technology has been widely used in the fields of art and film and television special effects. In this article, we will introduce how to implement image style migration using Python language.
1. What is image style transfer
Image style transfer can transfer the style of one image to another image. The style can be the artist's painting style, the photographer's shooting style, or other styles. The goal of image style transfer is to preserve the content of the original image while giving it a new style.
Image style transfer technology is a deep learning technology based on convolutional neural network (CNN). Its core idea is to extract the content and style information of the image through a pre-trained CNN model, and use optimization methods to combine the two or composited into a new image. Typically, the content information of an image is extracted through the deep convolutional layers of CNN, while the style information of the image is extracted through the correlation between the convolution kernels of CNN.
2. Implement image style migration
The main steps to implement image style migration in Python include loading images, preprocessing images, building models, calculating loss functions, using optimization methods to iterate and Output results. Next, we'll cover these step-by-step.
- Loading images
First, we need to load an original image and a reference image. The original image is the image that needs to be style transferred, and the reference image is the style image that is to be transferred. Loading images can be done using Python's PIL (Python Imaging Library) module.
from PIL import Image import numpy as np # 载入原始图像和参考图像 content_image = Image.open('content.jpg') style_image = Image.open('style.jpg') # 将图像转化为numpy数组,方便后续处理 content_array = np.array(content_image) style_array = np.array(style_image)
- Preprocessing image
Preprocessing includes converting the original image and the reference image into a format that the neural network can process, that is, converting the image into a Tensor and performing standardization at the same time . Here, we use the preprocessing module provided by PyTorch to complete.
import torch import torch.nn as nn import torchvision.transforms as transforms # 定义预处理函数 preprocess = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # 将图像进行预处理 content_tensor = preprocess(content_image).unsqueeze(0).to(device) style_tensor = preprocess(style_image).unsqueeze(0).to(device)
- Building a model
The image style transfer model can use models that have been trained on large-scale image databases. Commonly used models include VGG19 and ResNet. Here we use the VGG19 model to complete. First, we need to load the pre-trained VGG19 model and remove the last fully connected layer, leaving only the convolutional layer. Then, we need to adjust the content information and style information of the image by modifying the weights of the convolutional layer.
import torchvision.models as models class VGG(nn.Module): def __init__(self, requires_grad=False): super(VGG, self).__init__() vgg19 = models.vgg19(pretrained=True).features self.slice1 = nn.Sequential() self.slice2 = nn.Sequential() self.slice3 = nn.Sequential() self.slice4 = nn.Sequential() self.slice5 = nn.Sequential() for x in range(2): self.slice1.add_module(str(x), vgg19[x]) for x in range(2, 7): self.slice2.add_module(str(x), vgg19[x]) for x in range(7, 12): self.slice3.add_module(str(x), vgg19[x]) for x in range(12, 21): self.slice4.add_module(str(x), vgg19[x]) for x in range(21, 30): self.slice5.add_module(str(x), vgg19[x]) if not requires_grad: for param in self.parameters(): param.requires_grad = False def forward(self, x): h_relu1 = self.slice1(x) h_relu2 = self.slice2(h_relu1) h_relu3 = self.slice3(h_relu2) h_relu4 = self.slice4(h_relu3) h_relu5 = self.slice5(h_relu4) return h_relu1, h_relu2, h_relu3, h_relu4, h_relu5 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = VGG().to(device).eval()
- Calculate the loss function
Since the goal of image style transfer is to retain the content of the original image while giving it a new style, we need to define a loss function to achieve this goal. The loss function consists of two parts, one is content loss and the other is style loss.
Content loss can be defined by calculating the mean square error between the original image and the generated image in the feature map of the convolutional layer. The style loss is defined by calculating the mean square error between the Gram matrix between the feature map of the generated image and the style image in the convolutional layer. The Gram matrix here is the correlation matrix between the convolution kernels of the feature map.
def content_loss(content_features, generated_features): return torch.mean((content_features - generated_features)**2) def gram_matrix(input): batch_size , h, w, f_map_num = input.size() features = input.view(batch_size * h, w * f_map_num) G = torch.mm(features, features.t()) return G.div(batch_size * h * w * f_map_num) def style_loss(style_features, generated_features): style_gram = gram_matrix(style_features) generated_gram = gram_matrix(generated_features) return torch.mean((style_gram - generated_gram)**2) content_weight = 1 style_weight = 1000 def compute_loss(content_features, style_features, generated_features): content_loss_fn = content_loss(content_features, generated_features[0]) style_loss_fn = style_loss(style_features, generated_features[1]) loss = content_weight * content_loss_fn + style_weight * style_loss_fn return loss, content_loss_fn, style_loss_fn
- Iteration using the optimization method
After calculating the loss function, we can use the optimization method to adjust the pixel values of the generated image to minimize the loss function . Commonly used optimization methods include gradient descent method and L-BFGS algorithm. Here, we use the LBFGS optimizer provided by PyTorch to complete image migration. The number of iterations can be adjusted as needed. Usually, 2000 iterations can get better results.
from torch.optim import LBFGS generated = content_tensor.detach().clone().requires_grad_(True).to(device) optimizer = LBFGS([generated]) for i in range(2000): def closure(): optimizer.zero_grad() generated_features = model(generated) loss, content_loss_fn, style_loss_fn = compute_loss(content_features, style_features, generated_features) loss.backward() return content_loss_fn + style_loss_fn optimizer.step(closure) if i % 100 == 0: print('Iteration:', i) print('Total loss:', closure().tolist())
- Output results
Finally, we can save the generated image locally and observe the effect of image style migration.
import matplotlib.pyplot as plt generated_array = generated.cpu().detach().numpy() generated_array = np.squeeze(generated_array, 0) generated_array = generated_array.transpose(1, 2, 0) generated_array = np.clip(generated_array, 0, 1) plt.imshow(generated_array) plt.axis('off') plt.show() Image.fromarray(np.uint8(generated_array * 255)).save('generated.jpg')
3. Summary
This article introduces how to use Python language to implement image style transfer technology. By loading the image, preprocessing the image, building the model, calculating the loss function, iterating with the optimization method and outputting the result, we can transfer the style of one image to another. In practical applications, we can adjust parameters such as reference images and number of iterations according to different needs to obtain better results.
The above is the detailed content of Image style migration example in Python. For more information, please follow other related articles on the PHP Chinese website!

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python and C have significant differences in memory management and control. 1. Python uses automatic memory management, based on reference counting and garbage collection, simplifying the work of programmers. 2.C requires manual management of memory, providing more control but increasing complexity and error risk. Which language to choose should be based on project requirements and team technology stack.

Python's applications in scientific computing include data analysis, machine learning, numerical simulation and visualization. 1.Numpy provides efficient multi-dimensional arrays and mathematical functions. 2. SciPy extends Numpy functionality and provides optimization and linear algebra tools. 3. Pandas is used for data processing and analysis. 4.Matplotlib is used to generate various graphs and visual results.

Whether to choose Python or C depends on project requirements: 1) Python is suitable for rapid development, data science, and scripting because of its concise syntax and rich libraries; 2) C is suitable for scenarios that require high performance and underlying control, such as system programming and game development, because of its compilation and manual memory management.

Python is widely used in data science and machine learning, mainly relying on its simplicity and a powerful library ecosystem. 1) Pandas is used for data processing and analysis, 2) Numpy provides efficient numerical calculations, and 3) Scikit-learn is used for machine learning model construction and optimization, these libraries make Python an ideal tool for data science and machine learning.

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

Dreamweaver Mac version
Visual web development tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

SublimeText3 Mac version
God-level code editing software (SublimeText3)