Ridge regression is a commonly used linear regression method. It can achieve better results than ordinary least squares regression when dealing with multicollinearity problems, and can also be used for feature selection.
Python is a powerful programming language, and it is very convenient to use Python for ridge regression analysis. This article will introduce how to use Python to perform ridge regression analysis through an example.
First, we need to import the required libraries, as shown below:
import pandas as pd import numpy as np from sklearn.linear_model import Ridge from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error
The data used in this example is Boston housing price data. This data set contains 13 different housing prices in the Boston area in the 1970s. Information on features and their prices. We can read the data in through the read_csv function in the pandas library, as shown below:
data = pd.read_csv('Boston.csv')
Next, we need to divide the data set into a training set and a test set. This can be achieved using the train_test_split function in the scikit-learn library, as shown below:
X = data.iloc[:, :-1].values y = data.iloc[:, -1].values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
Before training the ridge regression model, we need to normalize the data to ensure that the value ranges of different features vary greatly. can compare their effects on the target variable. We can use the StandardScaler function in the scikit-learn library for standardization, the code is as follows:
from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test = sc_X.transform(X_test)
Then we can define a ridge regression model and put it into our training data set for training, the code is as follows Shown:
ridge = Ridge(alpha=0.1) ridge.fit(X_train, y_train)
The alpha value is a hyperparameter, and the model needs to be optimized by adjusting parameters. We can choose the optimal hyperparameters by evaluating the predictions on the training and test sets. In this example, we choose to perform cross-validation on the alpha value to select the optimal hyperparameters. The code is as follows:
from sklearn.model_selection import GridSearchCV ridge_params = {'alpha': [0.001, 0.01, 0.1, 1, 10]} ridge_grid = GridSearchCV(estimator=Ridge(), param_grid=ridge_params, cv=10, scoring='neg_mean_squared_error') ridge_grid.fit(X_train, y_train) print("Best alpha:", ridge_grid.best_params_['alpha'])
Through cross-validation, we choose the optimal alpha value to be 0.1.
Next, we can make predictions on the test set and evaluate the prediction results. We can use the mean_squared_error function in the scikit-learn library to calculate the mean square error, the code is as follows:
y_pred = ridge.predict(X_test) mse = mean_squared_error(y_test, y_pred) print("Mean Squared Error:", mse)
Finally, we can use the matplotlib library to draw a scatter plot of predicted values and true values for better Understand the prediction effect of the model. The code is as follows:
import matplotlib.pyplot as plt plt.scatter(y_test, y_pred) plt.xlabel("True Values") plt.ylabel("Predictions") plt.show()
In short, ridge regression analysis in Python is very convenient. Using the functions of the scikit-learn library can help us easily evaluate and visualize the prediction results.
The above is the detailed content of Ridge regression example in Python. For more information, please follow other related articles on the PHP Chinese website!

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Notepad++7.3.1
Easy-to-use and free code editor

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Dreamweaver CS6
Visual web development tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment
