search
HomeBackend DevelopmentPython TutorialMulti-process programming in Python

Multi-process programming in Python

Jun 10, 2023 am 09:24 AM
pythonmulti-Progressparallel computing

Multi-process programming in Python

Python is a very popular programming language. Its powerful functions, ease of learning and use, and interoperability with other programming languages ​​make Python widely used, from Python is used in everything from web development to artificial intelligence. At the same time, multi-process programming in Python is also recognized for its simple and efficient programming model.

What is multi-process programming?

Multi-process programming refers to using multiple processes to handle different tasks at the same time through Python programs. Compared with single-process programming, multi-process programming can ensure that the program runs faster and can handle multiple tasks at the same time, improving computer utilization efficiency.

Why use multi-process programming?

In some specific scenarios, using multi-process programming has more advantages than single-process programming. Some of the advantages are as follows:

1. Improve program execution speed: Multi-process programming can process multiple processes at the same time. Tasks, calculations between different processes are parallel, which greatly improves the speed of program running.

2. Improve computer utilization efficiency: Multi-process programming can use computer CPU, memory and other resources at the same time, making full use of computer performance, thus improving computer utilization efficiency.

3. Enhance program stability: If your program has some unstable factors, using multi-process technology can reduce the possibility of the entire program crashing due to the crash of a sub-process.

How to implement multi-process programming?

In Python, multi-process programming can be achieved through the following two methods:

1. Use Python’s built-in multiprocessing module. This module is implemented in an object-based manner and can be easily Used to create and manage multiple processes.

2. Use Python’s os module to call the process creation and management functions of the underlying operating system.

Below, we take the multiprocessing module as an example to introduce how to implement multi-process programming.

Basic usage of the multiprocessing module:

The main classes of the multiprocessing module are as follows:

1. Process: used to create new sub-processes.

2.Pool: Used to create a group of processes to execute multiple tasks in parallel.

3.Queue: Provides a method for communication between multiple processes.

4.Pipe: Provides an implementation method for bidirectional pipeline communication.

Below, we take the implementation of a simple calculator program as an example to introduce the specific usage of the multiprocessing module.

from multiprocessing import Process

def calculate(num):

result = num * num
print("The square of {} is {}".format(num, result))

if name == '__main__':

p1 = Process(target=calculate, args=(5,))
p2 = Process(target=calculate, args=(8,))

p1.start()
p2.start()

p1.join()
p2.join()

In this program, we define a calculate function, which is used to calculate the square of a number. We use the Process class to create two child processes that calculate the square of 5 and the square of 8 respectively. In the main program, we use the start method to start two child processes, and then use the join method to wait for the two processes to finish running. Running this program, you can get the following results:

The square of 5 is 25
The square of 8 is 64

The two processes in this program are executed in parallel. There is no blocking in between, so it runs very fast.

Conclusion:

Multi-process programming is a very important module in Python. Programming using many processes can greatly improve the calculation speed of the program and make full use of the computer's performance. , improve computer utilization. At the same time, in multi-process programming, we also need to pay attention to the issue of process communication, so as to make multi-process programming more efficient.

The above is the detailed content of Multi-process programming in Python. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python: Games, GUIs, and MorePython: Games, GUIs, and MoreApr 13, 2025 am 12:14 AM

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

Python vs. C  : Applications and Use Cases ComparedPython vs. C : Applications and Use Cases ComparedApr 12, 2025 am 12:01 AM

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

The 2-Hour Python Plan: A Realistic ApproachThe 2-Hour Python Plan: A Realistic ApproachApr 11, 2025 am 12:04 AM

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python: Exploring Its Primary ApplicationsPython: Exploring Its Primary ApplicationsApr 10, 2025 am 09:41 AM

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

How Much Python Can You Learn in 2 Hours?How Much Python Can You Learn in 2 Hours?Apr 09, 2025 pm 04:33 PM

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

How to teach computer novice programming basics in project and problem-driven methods within 10 hours?How to teach computer novice programming basics in project and problem-driven methods within 10 hours?Apr 02, 2025 am 07:18 AM

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

How to avoid being detected by the browser when using Fiddler Everywhere for man-in-the-middle reading?How to avoid being detected by the browser when using Fiddler Everywhere for man-in-the-middle reading?Apr 02, 2025 am 07:15 AM

How to avoid being detected when using FiddlerEverywhere for man-in-the-middle readings When you use FiddlerEverywhere...

What should I do if the '__builtin__' module is not found when loading the Pickle file in Python 3.6?What should I do if the '__builtin__' module is not found when loading the Pickle file in Python 3.6?Apr 02, 2025 am 07:12 AM

Error loading Pickle file in Python 3.6 environment: ModuleNotFoundError:Nomodulenamed...

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools