search
HomeBackend DevelopmentPython TutorialDetailed explanation of k-means clustering model in Python
Detailed explanation of k-means clustering model in PythonJun 10, 2023 am 09:15 AM
pythonk-meansclustering model

Detailed explanation of k-means clustering model in Python

Cluster analysis is a method used to discover similar objects in data. In fields such as data mining and machine learning, cluster analysis is widely used. k-means clustering is one of the more common clustering methods. It can divide the samples in the data set into k clusters, with the smallest internal difference in each cluster and the largest inter-cluster difference. This article will introduce the k-means clustering model in Python in detail.

  1. The principle of k-means clustering

The k-means clustering algorithm is an iterative clustering method. Its core steps include: initializing the center of mass, calculating distance, updating the center of mass, determining stopping conditions, etc.

First, you need to specify the number of clusters k. Then k data samples are randomly selected as the initial centroids, and for each remaining sample, it is assigned to the cluster with the nearest centroid. Next, the sum of the squared distances of all data points in each cluster from the centroid of the cluster is calculated as the error of the cluster. The centroid of each cluster is then updated, moving it to the center of all samples in that cluster. Repeat the above steps until the error is less than a certain threshold or the upper limit of the number of iterations is reached.

  1. Python implements k-means clustering

In Python, the sklearn library provides the k-means clustering function, which is the simplest way to use the k-means clustering algorithm. method. The following takes the iris data set as an example to show how to use Python to implement k-means clustering

from sklearn.cluster import KMeans
from sklearn.datasets import load_iris

iris = load_iris()
X = iris.data[:, :2]  # 为了便于可视化,只取前两个特征
y = iris.target

kmeans = KMeans(n_clusters=3)  # 聚成3类
kmeans.fit(X)

centroids = kmeans.cluster_centers_  # 质心
labels = kmeans.labels_  # 样本分类

# 绘制图形
import matplotlib.pyplot as plt

colors = ['red', 'green', 'blue']
for i in range(len(X)):
    plt.scatter(X[i][0], X[i][1], c=colors[labels[i]])
    
for c in centroids:
    plt.scatter(c[0], c[1], marker='x', s=300, linewidths=3, color='black')
    
plt.show()

Execute the above code to generate an image similar to the following:

In the image, red, green and blue The color points represent different clusters, and the black "x" symbol represents the centroid of each cluster.

  1. How to choose the optimal k value

How to determine the optimal k value is one of the more difficult problems in the k-means clustering algorithm. Two common methods are introduced below: the elbow method and the contour coefficient method.

Elbow method: First, set the k value to a smaller integer and calculate the sum of squared errors (SSE) for each cluster. As the value of k increases, the sum of squared errors decreases. When the k value increases to a certain level, SSE no longer drops significantly. At this time, the relationship between the k value and SSE is drawn into a curve graph, which must present an elbow line segment. The line segment is at the "elbow" position here, and the corresponding k value is the optimal number of clusters.

Code example:

sse = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters=i).fit(X)
    sse.append(kmeans.inertia_)  # ineria_属性表示模型的误差平方和
 
plt.plot(range(1, 11), sse)
plt.xlabel('K')
plt.ylabel('SSE')
plt.show()

Silhouette coefficient method: Silhouette coefficient combines the two factors of intra-cluster irrelevance and inter-cluster similarity. The larger the value of the silhouette coefficient, the better the clustering effect. The calculation process of the silhouette coefficient method is as follows:

For each sample, calculate its average distance from all samples in the same cluster (called a), and calculate its average distance from all samples in the nearest other clusters (called a) for b).

Calculate the silhouette coefficient s of each sample, $s = rac {b-a} {max(a, b)}$. The silhouette coefficient of the entire model is the average of the silhouette coefficients of all samples.

Code example:

from sklearn.metrics import silhouette_score

sil_scores = []
for k in range(2, 11):
    kmeans = KMeans(n_clusters=k).fit(X)
    sil_score = silhouette_score(X, kmeans.labels_)  # 计算轮廓系数
    sil_scores.append(sil_score)
    
plt.plot(range(2, 11), sil_scores)
plt.xlabel('K')
plt.ylabel('Silhouette Coefficient')
plt.show()
  1. k-means clustering considerations

k-means clustering has the following considerations:

The initial value has a greater impact on the results. If the initial value is not good, you may get poor results.

The clustering results depend on the selected distance metric, such as Euclidean distance, Manhattan distance, etc. The choice should be made according to the actual situation.

Outliers in the data set are easily attracted to the wrong clusters, and removal of outliers should be considered.

When the sample class distribution is unbalanced, a common problem is to obtain clusters with extremely skewed attributes.

  1. Summary

k-means clustering is a widely used clustering algorithm. In Python, the KMeans function provided by the sklearn library can be used to quickly implement it. At the same time, the elbow method or the silhouette coefficient method can also be used to determine the optimal number of clusters. At the same time, attention should be paid to the selection of the k value and the setting of the initial centroid during application.

The above is the detailed content of Detailed explanation of k-means clustering model in Python. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
详细讲解Python之Seaborn(数据可视化)详细讲解Python之Seaborn(数据可视化)Apr 21, 2022 pm 06:08 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

详细了解Python进程池与进程锁详细了解Python进程池与进程锁May 10, 2022 pm 06:11 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

Python自动化实践之筛选简历Python自动化实践之筛选简历Jun 07, 2022 pm 06:59 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

归纳总结Python标准库归纳总结Python标准库May 03, 2022 am 09:00 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于标准库总结的相关问题,下面一起来看一下,希望对大家有帮助。

分享10款高效的VSCode插件,总有一款能够惊艳到你!!分享10款高效的VSCode插件,总有一款能够惊艳到你!!Mar 09, 2021 am 10:15 AM

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

Python数据类型详解之字符串、数字Python数据类型详解之字符串、数字Apr 27, 2022 pm 07:27 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

详细介绍python的numpy模块详细介绍python的numpy模块May 19, 2022 am 11:43 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

python中文是什么意思python中文是什么意思Jun 24, 2019 pm 02:22 PM

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version