search
HomeJavajavaTutorialLocking mechanism in Java
Locking mechanism in JavaJun 08, 2023 am 08:03 AM
javalock mechanismconcurrent

Java, as a high-level programming language, is widely used in concurrent programming. In a multi-threaded environment, in order to ensure the correctness and consistency of data, Java uses a lock mechanism. This article will discuss the lock mechanism in Java from the aspects of lock concepts, types, implementation methods and usage scenarios.

1. The concept of lock

Lock is a synchronization mechanism used to control access to shared resources between multiple threads. In a multi-threaded environment, threads execute concurrently, and multiple threads may modify the same data at the same time, which will lead to data inconsistency. The lock can ensure that only one thread can access shared data at the same time, thereby ensuring data consistency.

2. Types of locks

The commonly used lock types in Java are as follows:

  1. Mutex (Mutex)

Mutex lock is the most basic lock mechanism, also called exclusive lock. At the same time, only one thread can occupy the lock, and other threads must wait for the lock to be released. Synchronized and ReentrantLock in Java are both implementations of mutex locks.

  1. ReadWriteLock

ReadWrite lock is a special lock mechanism used to control read and write operations. At the same time, multiple threads can be allowed to read shared data, but only one thread is allowed to write. ReentrantReadWriteLock in Java is the implementation of read-write lock.

  1. SpinLock

Spin lock is a special mutex lock used to solve lightweight concurrency problems. When a thread needs to occupy a lock, if the lock is already occupied by another thread, the thread will not enter the blocking state, but will wait until the lock is released. AtomicInteger in Java is a typical application of spin lock.

3. How to implement lock

The lock mechanism in Java can be implemented in two ways: synchronized and ReentrantLock.

  1. synchronized implements the lock mechanism

The synchronized keyword is the most basic way to implement a mutex lock in Java. In synchronized, the scope of the lock can be the entire method or a part of the code block in the method. When a thread enters a method or code block, it will try to acquire the lock. If the lock is already occupied by another thread, the thread will enter a blocking state until the lock is acquired.

The advantage of synchronized implementation of the lock mechanism is that it is simple and easy to use, and there is no need to manually manage the acquisition and release of locks. However, the scope of synchronized locks is relatively large. It can only lock the entire method or code block, and cannot control the fine-grained operations. It can only be mutually exclusive and cannot support complex locking mechanisms such as read-write locks.

  1. ReentrantLock implements the lock mechanism

ReentrantLock is a more flexible mutex lock implementation in Java than synchronized, and can support reentrant locks, fair locks and unfair locks, etc. Multiple advanced locking mechanisms. When a thread needs to occupy a lock, it can try to acquire the lock through the tryLock() method. If it fails to acquire the lock, it can respond to an interrupt while waiting through the lockInterruptibly() method, or enter the blocking state and wait to acquire the lock through the lock() method.

The advantage of ReentrantLock in implementing the lock mechanism is that it is more powerful than synchronized, can support a variety of complex lock mechanisms, and has better performance. However, compared to synchronized, ReentrantLock is more cumbersome to use and requires manual management of lock acquisition and release.

4. Lock usage scenarios

The lock mechanism is mainly suitable for scenarios where multi-threads access shared data. You can consider using the lock mechanism in the following situations:

  1. When modifying data such as global variables and static variables.
  2. When modifying objects such as collection classes or arrays.
  3. When accessing persistent data such as files or databases.
  4. When performing collaborative operations between multiple threads.

In short, in a multi-threaded environment, as long as there is a modification operation of shared data, a lock mechanism needs to be used to ensure the correctness and consistency of the data.

5. Summary

The locking mechanism in Java is an important means to ensure data correctness and consistency in a multi-threaded environment. Commonly used lock types in Java include mutex locks, read-write locks and spin locks, which can be implemented in two ways: synchronized and ReentrantLock. In actual applications, it is necessary to select an appropriate lock mechanism based on actual needs, and pay attention to the scope of the lock, how to use the lock, and how to release the lock to avoid common problems such as deadlock.

The above is the detailed content of Locking mechanism in Java. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
带你搞懂Java结构化数据处理开源库SPL带你搞懂Java结构化数据处理开源库SPLMay 24, 2022 pm 01:34 PM

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于结构化数据处理开源库SPL的相关问题,下面就一起来看一下java下理想的结构化数据处理类库,希望对大家有帮助。

Java集合框架之PriorityQueue优先级队列Java集合框架之PriorityQueue优先级队列Jun 09, 2022 am 11:47 AM

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于PriorityQueue优先级队列的相关知识,Java集合框架中提供了PriorityQueue和PriorityBlockingQueue两种类型的优先级队列,PriorityQueue是线程不安全的,PriorityBlockingQueue是线程安全的,下面一起来看一下,希望对大家有帮助。

完全掌握Java锁(图文解析)完全掌握Java锁(图文解析)Jun 14, 2022 am 11:47 AM

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于java锁的相关问题,包括了独占锁、悲观锁、乐观锁、共享锁等等内容,下面一起来看一下,希望对大家有帮助。

一起聊聊Java多线程之线程安全问题一起聊聊Java多线程之线程安全问题Apr 21, 2022 pm 06:17 PM

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于多线程的相关问题,包括了线程安装、线程加锁与线程不安全的原因、线程安全的标准类等等内容,希望对大家有帮助。

详细解析Java的this和super关键字详细解析Java的this和super关键字Apr 30, 2022 am 09:00 AM

本篇文章给大家带来了关于Java的相关知识,其中主要介绍了关于关键字中this和super的相关问题,以及他们的一些区别,下面一起来看一下,希望对大家有帮助。

Java基础归纳之枚举Java基础归纳之枚举May 26, 2022 am 11:50 AM

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于枚举的相关问题,包括了枚举的基本操作、集合类对枚举的支持等等内容,下面一起来看一下,希望对大家有帮助。

java中封装是什么java中封装是什么May 16, 2019 pm 06:08 PM

封装是一种信息隐藏技术,是指一种将抽象性函式接口的实现细节部分包装、隐藏起来的方法;封装可以被认为是一个保护屏障,防止指定类的代码和数据被外部类定义的代码随机访问。封装可以通过关键字private,protected和public实现。

Java数据结构之AVL树详解Java数据结构之AVL树详解Jun 01, 2022 am 11:39 AM

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于平衡二叉树(AVL树)的相关知识,AVL树本质上是带了平衡功能的二叉查找树,下面一起来看一下,希望对大家有帮助。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Hot Tools

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!