In recent years, more and more businesses have adopted artificial intelligence technology to automate contact centers to handle the calls, chats and text messages of millions of customers. Now, ChatGPT's superior communication skills are being merged with key capabilities integrated into business-specific systems such as internal knowledge bases and CRMs.
The application of large-scale language models (LLM) can enhance automated contact centers, enabling them to resolve customer requests from start to finish like human customer service, and has achieved remarkable results. On the other hand, as more customers become aware of ChatGPT's human-like capabilities, you can imagine they will start to become more frustrated with legacy systems that often require them to wait 45 minutes for their credit card information to be updated.
But don’t be afraid. While using AI to solve customer problems may seem outdated to early adopters, the timing is actually perfect.
LLM Can Stop Decline in Customer Satisfaction
Satisfaction levels in the customer service industry have fallen to their lowest levels in decades due to a lack of seats and increased demand. The rise of LLM is bound to make artificial intelligence a core issue for every boardroom trying to rebuild customer loyalty.
Businesses that had turned to expensive outsourcing options, or eliminated contact centers entirely, suddenly saw a sustainable path to growth.
The blueprint has been drawn. AI can help achieve three primary goals of a call center: resolve customer issues in the first ring, reduce overall costs, and reduce agent burden (and by doing so, increase agent retention).
Over the past few years, enterprise-level contact centers have deployed artificial intelligence to handle their most common requests (e.g., billing, account management, and even outbound calls), and this trend looks set to continue in 2023 The years go on.
By doing this, they have been able to reduce wait times, allow their agents to focus on revenue-generating or value-added calls, and free themselves from outdated strategies designed to drive customers away from agents and solutions.
All of this can lead to cost savings, and Gartner predicts that the deployment of artificial intelligence will reduce contact center costs by more than $80 billion by 2026.
LLM makes automation easier and better than ever
LLM is trained on massive public datasets. This broad knowledge of the world lends itself well to customer service. They are able to accurately understand a customer's actual needs, regardless of the caller's way of speaking or presenting them.
LLM has been integrated into existing automation platforms, effectively improving the platform's ability to understand unstructured human conversations while reducing the occurrence of errors. This results in better resolution rates, fewer conversation steps, shorter call times and less need for an agent.
Customers can talk to the machine using any natural sentences, including asking multiple questions, asking the machine to wait or sending information via text. A key improvement to LLM is improved call resolution, allowing more customers to get the answers they need without having to speak to an agent.
LLM also significantly reduces the time required to customize and deploy artificial intelligence. With the right API, a short-staffed contact center can have a solution up and running in a matter of weeks without having to manually train artificial intelligence to understand the various requests a customer might make.
Contact centers face huge challenges and must simultaneously meet strict SLA metrics and keep call duration to a minimum. With LLM, they can not only answer more calls but also resolve issues end-to-end.
Call Center Automation Reduces ChatGPT Risk
While LLM is impressive, there are also many documented cases of inappropriate answers and "hallucinations" - on the machine When it doesn't know what to say, it makes up answers.
For enterprises, this is the number one reason why LLMs like ChatGPT cannot connect directly with customers, let alone integrate them with specific business systems, rules and platforms.
Existing AI platforms, such as Dialpad, Replicant and Five9, are providing contact centers with safeguards to better leverage the power of LLM while reducing risk. These solutions comply with SOC2, HIPAA and PCI standards to ensure maximum protection of customers' personal information.
And, because conversations are configured specifically for each use case, contact centers can control every word spoken or written by their machines, eliminating the need for prompt input (i.e. users trying to “trick” the LLM). Unpredictable risks caused by circumstances).
In the rapidly changing world of artificial intelligence, contact centers have more technology solutions to evaluate than ever before.
Customer expectations are rising and ChatGPT level service will soon become the common standard. All signs point to customer service being one of the sectors that has benefited most from past technological revolutions.
The above is the detailed content of In the field of customer service, changes related to ChatGPT have begun. For more information, please follow other related articles on the PHP Chinese website!

如果你一直在关注大型语言模型的架构,你可能会在最新的模型和研究论文中看到“SwiGLU”这个词。SwiGLU可以说是在大语言模型中最常用到的激活函数,我们本篇文章就来对它进行详细的介绍。SwiGLU其实是2020年谷歌提出的激活函数,它结合了SWISH和GLU两者的特点。SwiGLU的中文全称是“双向门控线性单元”,它将SWISH和GLU两种激活函数进行了优化和结合,以提高模型的非线性表达能力。SWISH是一种非常普遍的激活函数,它在大语言模型中得到广泛应用,而GLU则在自然语言处理任务中表现出

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

随着开源大型语言模型的性能不断提高,编写和分析代码、推荐、文本摘要和问答(QA)对的性能都有了很大的提高。但是当涉及到QA时,LLM通常会在未训练数据的相关的问题上有所欠缺,很多内部文件都保存在公司内部,以确保合规性、商业秘密或隐私。当查询这些文件时,会使得LLM产生幻觉,产生不相关、捏造或不一致的内容。一种处理这一挑战的可行技术是检索增强生成(RAG)。它涉及通过引用训练数据源之外的权威知识库来增强响应的过程,以提升生成的质量和准确性。RAG系统包括一个检索系统,用于从语料库中检索相关文档片段

2024年是大型语言模型(LLM)迅速发展的一年。在LLM的训练中,对齐方法是一个重要的技术手段,其中包括监督微调(SFT)和依赖人类偏好的人类反馈强化学习(RLHF)。这些方法在LLM的发展中起到了至关重要的作用,但是对齐方法需要大量的人工注释数据。面对这一挑战,微调成为一个充满活力的研究领域,研究人员积极致力于开发能够有效利用人类数据的方法。因此,对齐方法的发展将推动LLM技术的进一步突破。加州大学最近进行了一项研究,介绍了一种名为SPIN(SelfPlayfInetuNing)的新技术。S

在使用大型语言模型(LLM)时,幻觉是一个常见问题。尽管LLM可以生成流畅连贯的文本,但其生成的信息往往不准确或不一致。为了防止LLM产生幻觉,可以利用外部的知识来源,比如数据库或知识图谱,来提供事实信息。这样一来,LLM可以依赖这些可靠的数据源,从而生成更准确和可靠的文本内容。向量数据库和知识图谱向量数据库向量数据库是一组表示实体或概念的高维向量。它们可以用于度量不同实体或概念之间的相似性或相关性,通过它们的向量表示进行计算。一个向量数据库可以根据向量距离告诉你,“巴黎”和“法国”比“巴黎”和

组查询注意力(GroupedQueryAttention)是大型语言模型中的一种多查询注意力力方法,它的目标是在保持MQA速度的同时实现MHA的质量。GroupedQueryAttention将查询分组,每个组内的查询共享相同的注意力权重,这有助于降低计算复杂度和提高推理速度。这篇文章中,我们将解释GQA的思想以及如何将其转化为代码。GQA是在论文GQA:TrainingGeneralizedMulti-QueryTransformerModelsfromMulti-HeadCheckpoint

随着语言模型扩展到前所未有的规模,对下游任务进行全面微调变得十分昂贵。为了解决这个问题,研究人员开始关注并采用PEFT方法。PEFT方法的主要思想是将微调的范围限制在一小部分参数上,以降低计算成本,同时仍能实现自然语言理解任务的最先进性能。通过这种方式,研究人员能够在保持高性能的同时,节省计算资源,为自然语言处理领域带来新的研究热点。RoSA是一种新的PEFT技术,通过在一组基准测试的实验中,发现在使用相同参数预算的情况下,RoSA表现出优于先前的低秩自适应(LoRA)和纯稀疏微调方法。本文将深


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Atom editor mac version download
The most popular open source editor

Notepad++7.3.1
Easy-to-use and free code editor
