search
HomeBackend DevelopmentPython TutorialHow to use dictionary tree for text matching in Python?

1. What is a dictionary tree

Dictionary tree (Trie), also called prefix tree (Prefix Tree), is a tree data structure. Dictionary trees can perform efficient search, insertion, and deletion operations on strings. The core idea is to use the common prefix of strings to reduce query time complexity.

In the dictionary tree, each node represents the prefix of a string. The path from the root node to the leaf node represents a complete string. Each node on the path has a flag indicating whether the string represented by the node exists in the dictionary tree.

2. Implementation of dictionary tree

In Python, you can use a dictionary (dict) to implement a dictionary tree. In the dictionary tree, each node is a dictionary used to store the next character and its corresponding node. When you need to traverse the dictionary tree, you only need to find the corresponding node based on the current character, and then enter the node corresponding to the next character, and so on until the string ends or cannot be matched.

The following is a simple dictionary tree implementation:

class TrieNode:
    def __init__(self):
        self.children = {}
        self.is_word = False

class Trie:
    def __init__(self):
        self.root = TrieNode()

    def insert(self, word):
        curr = self.root
        for ch in word:
            if ch not in curr.children:
                curr.children[ch] = TrieNode()
            curr = curr.children[ch]
        curr.is_word = True

    def search(self, word):
        curr = self.root
        for ch in word:
            if ch not in curr.children:
                return False
            curr = curr.children[ch]
        return curr.is_word

    def starts_with(self, prefix):
        curr = self.root
        for ch in prefix:
            if ch not in curr.children:
                return False
            curr = curr.children[ch]
        return True

3. Application of dictionary tree

Dictionary tree can be used for text matching, such as word spelling check, word matching, etc. . The following is a simple example of using a dictionary tree to implement word spell checking:

import re

word_list = ['hello', 'world', 'python', 'teacher', 'student']

def sanitize_word(word):
    return re.sub(r'[^a-z]', '', word.lower())

def spell_check(word):
    trie = Trie()
    for w in word_list:
        trie.insert(sanitize_word(w))

    if trie.search(sanitize_word(word)):
        print('Correct spelling!')
    else:
        print('Did you mean one of the following words?')
        similar_words = get_similar_words(trie, sanitize_word(word))
        for w in similar_words:
            print(w)

def get_similar_words(trie, word, distance=1):
    similar_words = []
    for i in range(len(word)):
        for ch in range(ord('a'), ord('z')+1):
            new_word = word[:i] + chr(ch) + word[i+1:]
            if trie.search(new_word):
                similar_words.append(new_word)
    return similar_words

spell_check('helo')

In the above code, we can check whether a word exists in the word list through a dictionary tree. If the word exists, output "Correct spelling!"; otherwise, output a similar word.

4. Summary

The dictionary tree is a very practical data structure that can be used for efficient text matching. You can use dictionaries to implement dictionary trees in Python, which is very simple and easy to understand. In practical applications, it can be adjusted and expanded according to actual needs to achieve better results.

The above is the detailed content of How to use dictionary tree for text matching in Python?. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
详细讲解Python之Seaborn(数据可视化)详细讲解Python之Seaborn(数据可视化)Apr 21, 2022 pm 06:08 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

详细了解Python进程池与进程锁详细了解Python进程池与进程锁May 10, 2022 pm 06:11 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

Python自动化实践之筛选简历Python自动化实践之筛选简历Jun 07, 2022 pm 06:59 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

归纳总结Python标准库归纳总结Python标准库May 03, 2022 am 09:00 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于标准库总结的相关问题,下面一起来看一下,希望对大家有帮助。

Python数据类型详解之字符串、数字Python数据类型详解之字符串、数字Apr 27, 2022 pm 07:27 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

分享10款高效的VSCode插件,总有一款能够惊艳到你!!分享10款高效的VSCode插件,总有一款能够惊艳到你!!Mar 09, 2021 am 10:15 AM

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

详细介绍python的numpy模块详细介绍python的numpy模块May 19, 2022 am 11:43 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

python中文是什么意思python中文是什么意思Jun 24, 2019 pm 02:22 PM

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.