search
HomeTechnology peripheralsAIIdentifying ChatGPT fraud, the effect surpasses OpenAI: Peking University and Huawei's AI-generated detectors are here

Heart of Machine Column

Heart of Machine Editorial Department

The success rate of AI fraud is very high. A few days ago, "4.3 million defrauded in 10 minutes" was a hot search topic. Building on the hottest large language model, researchers have recently explored a recognition method.

With the continuous progress of large generative models, the corpus they generate is gradually approaching that of humans. Although large models are liberating the hands of countless clerks, their powerful ability to fake fake ones has also been used by some criminals, causing a series of social problems:

Identifying ChatGPT fraud, the effect surpasses OpenAI: Peking University and Huaweis AI-generated detectors are here

Identifying ChatGPT fraud, the effect surpasses OpenAI: Peking University and Huaweis AI-generated detectors are here

Identifying ChatGPT fraud, the effect surpasses OpenAI: Peking University and Huaweis AI-generated detectors are here

Researchers from Peking University and Huawei have proposed a reliable text detector for identifying various AI-generated corpora. According to the different characteristics of long and short texts, a multi-scale AI-generated text detector training method based on PU learning is proposed. By improving the detector training process, considerable improvements in detection capabilities on long and short ChatGPT corpus can be achieved under the same conditions, solving the pain point of low accuracy of short text recognition by current detectors.

Identifying ChatGPT fraud, the effect surpasses OpenAI: Peking University and Huaweis AI-generated detectors are here

Paper address:

https://arxiv.org/abs/2305.18149

Code address (MindSpore):

https://github.com/mindspore-lab/mindone/tree/master/examples/detect_chatgpt

Code address (PyTorch):

https://github.com/YuchuanTian/AIGC_text_detector

Introduction

As the generation effects of large language models become more and more realistic, various industries urgently need a reliable AI-generated text detector. However, different industries have different requirements for detection corpus. For example, in academia, it is generally necessary to detect large and complete academic texts; on social platforms, relatively short and fragmented fake news needs to be detected. However, existing detectors often cannot meet various needs. For example, some mainstream AI text detectors generally have poor prediction capabilities for shorter corpus.

Regarding the different detection effects of corpus of different lengths, the author observed that there may be some "uncertainty" in the attribution of shorter AI-generated texts; or to put it more bluntly, because some AI-generated short sentences are often also It is used by humans, so it is difficult to determine whether the short text generated by AI comes from humans or AI. Here are several examples of humans and AI answering the same question:

Identifying ChatGPT fraud, the effect surpasses OpenAI: Peking University and Huaweis AI-generated detectors are here

It can be seen from these examples that it is difficult to identify short answers generated by AI: the difference between this type of corpus and humans is too small, and it is difficult to strictly judge its true attributes. Therefore, it is inappropriate to simply annotate short texts as human/AI and follow the traditional binary classification problem for text detection.

In response to this problem, this study transforms the human/AI binary classification detection part into a partial PU (Positive-Unlabeled) learning problem, that is, in shorter sentences, the human language is positive (Positive), and the machine The language is Unlabeled, which improves the training loss function. This improvement significantly improves the detector's classification performance on various corpora.

Algorithm details

Under the traditional PU learning setting, a two-classification model can only learn based on positive training samples and unlabeled training samples. A commonly used PU learning method is to estimate the binary classification loss corresponding to negative samples by formulating PU loss:

Identifying ChatGPT fraud, the effect surpasses OpenAI: Peking University and Huaweis AI-generated detectors are here

Among them, represents the binary classification loss calculated by positive samples and positive labels; represents the binary classification loss calculated by assuming all unlabeled samples to be negative labels; represents the binary classification loss calculated by assuming positive samples as negative labels; represents The prior positive sample probability is the estimated proportion of positive samples in all PU samples. In traditional PU learning, the prior is usually set to a fixed hyperparameter. However, in the text detection scenario, the detector needs to process various texts of different lengths; and for texts of different lengths, the estimated proportion of positive samples among all PU samples of the same length as the sample is also different. . Therefore, this study improves PU Loss and proposes a length-sensitive multi-scale PU (MPU) loss function.

Specifically, this study proposes an abstract recurrent model to model shorter text detection. When traditional NLP models process sequences, they usually have a Markov chain structure, such as RNN, LSTM, etc. The process of this type of cyclic model can usually be understood as a gradually iterative process, that is, the prediction of each token output is obtained by transforming and merging the prediction results of the previous token and the previous sequence with the prediction results of this token. That is the following process:

Identifying ChatGPT fraud, the effect surpasses OpenAI: Peking University and Huaweis AI-generated detectors are here

In order to estimate the prior probability based on this abstract model, it is necessary to assume that the output of the model is the confidence that a certain sentence is positive, that is, the probability of judging it to be a sample spoken by a person. It is assumed that the contribution size of each token is the inverse proportion of the length of the sentence token, it is positive, that is, unlabeled, and the probability of being unlabeled is much greater than the probability of being positive. Because as the vocabulary of large models gradually approaches that of humans, most words will appear in both AI and human corpora. Based on this simplified model and the set positive token probability, the final prior estimate is obtained by finding the total expectation of the model output confidence under different input conditions.

Identifying ChatGPT fraud, the effect surpasses OpenAI: Peking University and Huaweis AI-generated detectors are here

Through theoretical derivation and experiments, it is estimated that the prior probability increases as the length of the text increases, and eventually stabilizes. This phenomenon is also expected, because as the text becomes longer, the detector can capture more information, and the "source uncertainty" of the text gradually weakens:

Identifying ChatGPT fraud, the effect surpasses OpenAI: Peking University and Huaweis AI-generated detectors are here

After that, for each positive sample, the PU loss is calculated based on the unique prior obtained from its sample length. Finally, since shorter texts only have some "uncertainty" (that is, shorter texts will also contain text features of some people or AI), the binary loss and MPU loss can be weighted and added as the final optimization goal:

Identifying ChatGPT fraud, the effect surpasses OpenAI: Peking University and Huaweis AI-generated detectors are here

In addition, it should be noted that MPU loss adapts to training corpus of various lengths. If the existing training data is obviously homogeneous and most of the corpus consists of long and lengthy texts, the MPU method cannot fully exert its effectiveness. In order to make the length of the training corpus more diverse, this study also introduces a multi-scaling module at the sentence level. This module randomly covers some sentences in the training corpus and reorganizes the remaining sentences while retaining the original order. After multi-scale operation of the training corpus, the training text has been greatly enriched in length, thus making full use of PU learning for AI text detector training.

Experimental results

Identifying ChatGPT fraud, the effect surpasses OpenAI: Peking University and Huaweis AI-generated detectors are here

As shown in the table above, the author first tested the effect of MPU loss on the shorter AI-generated corpus data set Tweep-Fake. The corpus in this data set is all relatively short segments on Twitter. The author also replaces the traditional two-category loss with an optimization goal containing MPU loss based on traditional language model fine-tuning. The improved language model detector is more effective and surpasses other baseline algorithms.

Identifying ChatGPT fraud, the effect surpasses OpenAI: Peking University and Huaweis AI-generated detectors are here

The author also tested the text generated by chatGPT. The language model detector obtained through traditional fine-tuning performed poorly on short sentences; the detector trained under the same conditions through MPU method performed well on short sentences, and At the same time, it can achieve considerable performance improvement on the complete corpus, with the F1-score increasing by 1%, surpassing SOTA algorithms such as OpenAI and DetectGPT.

Identifying ChatGPT fraud, the effect surpasses OpenAI: Peking University and Huaweis AI-generated detectors are here

As shown in the table above, the author observed the effect gain brought by each part in the ablation experiment. MPU loss enhances the classification effect of long and short materials.

Identifying ChatGPT fraud, the effect surpasses OpenAI: Peking University and Huaweis AI-generated detectors are here

The author also compared traditional PU and Multiscale PU (MPU). It can be seen from the above table that the MPU effect is better and can better adapt to the task of AI multi-scale text detection.

Summarize

The author solved the problem of short sentence recognition by text detectors by proposing a solution based on multi-scale PU learning. With the proliferation of AIGC generation models in the future, the detection of this type of content will become increasingly important. This research has taken a solid step forward in the issue of AI text detection. It is hoped that there will be more similar research in the future to better control AIGC content and prevent the abuse of AI-generated content.

The above is the detailed content of Identifying ChatGPT fraud, the effect surpasses OpenAI: Peking University and Huawei's AI-generated detectors are here. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:搜狐. If there is any infringement, please contact admin@php.cn delete
From Friction To Flow: How AI Is Reshaping Legal WorkFrom Friction To Flow: How AI Is Reshaping Legal WorkMay 09, 2025 am 11:29 AM

The legal tech revolution is gaining momentum, pushing legal professionals to actively embrace AI solutions. Passive resistance is no longer a viable option for those aiming to stay competitive. Why is Technology Adoption Crucial? Legal professional

This Is What AI Thinks Of You And Knows About YouThis Is What AI Thinks Of You And Knows About YouMay 09, 2025 am 11:24 AM

Many assume interactions with AI are anonymous, a stark contrast to human communication. However, AI actively profiles users during every chat. Every prompt, every word, is analyzed and categorized. Let's explore this critical aspect of the AI revo

7 Steps To Building A Thriving, AI-Ready Corporate Culture7 Steps To Building A Thriving, AI-Ready Corporate CultureMay 09, 2025 am 11:23 AM

A successful artificial intelligence strategy cannot be separated from strong corporate culture support. As Peter Drucker said, business operations depend on people, and so does the success of artificial intelligence. For organizations that actively embrace artificial intelligence, building a corporate culture that adapts to AI is crucial, and it even determines the success or failure of AI strategies. West Monroe recently released a practical guide to building a thriving AI-friendly corporate culture, and here are some key points: 1. Clarify the success model of AI: First of all, we must have a clear vision of how AI can empower business. An ideal AI operation culture can achieve a natural integration of work processes between humans and AI systems. AI is good at certain tasks, while humans are good at creativity and judgment

Netflix New Scroll, Meta AI's Game Changers, Neuralink Valued At $8.5 BillionNetflix New Scroll, Meta AI's Game Changers, Neuralink Valued At $8.5 BillionMay 09, 2025 am 11:22 AM

Meta upgrades AI assistant application, and the era of wearable AI is coming! The app, designed to compete with ChatGPT, offers standard AI features such as text, voice interaction, image generation and web search, but has now added geolocation capabilities for the first time. This means that Meta AI knows where you are and what you are viewing when answering your question. It uses your interests, location, profile and activity information to provide the latest situational information that was not possible before. The app also supports real-time translation, which completely changed the AI ​​experience on Ray-Ban glasses and greatly improved its usefulness. The imposition of tariffs on foreign films is a naked exercise of power over the media and culture. If implemented, this will accelerate toward AI and virtual production

Take These Steps Today To Protect Yourself Against AI CybercrimeTake These Steps Today To Protect Yourself Against AI CybercrimeMay 09, 2025 am 11:19 AM

Artificial intelligence is revolutionizing the field of cybercrime, which forces us to learn new defensive skills. Cyber ​​criminals are increasingly using powerful artificial intelligence technologies such as deep forgery and intelligent cyberattacks to fraud and destruction at an unprecedented scale. It is reported that 87% of global businesses have been targeted for AI cybercrime over the past year. So, how can we avoid becoming victims of this wave of smart crimes? Let’s explore how to identify risks and take protective measures at the individual and organizational level. How cybercriminals use artificial intelligence As technology advances, criminals are constantly looking for new ways to attack individuals, businesses and governments. The widespread use of artificial intelligence may be the latest aspect, but its potential harm is unprecedented. In particular, artificial intelligence

A Symbiotic Dance: Navigating Loops Of Artificial And Natural PerceptionA Symbiotic Dance: Navigating Loops Of Artificial And Natural PerceptionMay 09, 2025 am 11:13 AM

The intricate relationship between artificial intelligence (AI) and human intelligence (NI) is best understood as a feedback loop. Humans create AI, training it on data generated by human activity to enhance or replicate human capabilities. This AI

AI's Biggest Secret — Creators Don't Understand It, Experts SplitAI's Biggest Secret — Creators Don't Understand It, Experts SplitMay 09, 2025 am 11:09 AM

Anthropic's recent statement, highlighting the lack of understanding surrounding cutting-edge AI models, has sparked a heated debate among experts. Is this opacity a genuine technological crisis, or simply a temporary hurdle on the path to more soph

Bulbul-V2 by Sarvam AI: India's Best TTS ModelBulbul-V2 by Sarvam AI: India's Best TTS ModelMay 09, 2025 am 10:52 AM

India is a diverse country with a rich tapestry of languages, making seamless communication across regions a persistent challenge. However, Sarvam’s Bulbul-V2 is helping to bridge this gap with its advanced text-to-speech (TTS) t

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)