Scenario
In Redis, there is often a situation where the value of a certain key is read, some business logic processing is performed, and then a new value is calculated based on the read value. Set it in again.
If client A has just read the key value, and then client B modifies the key value, then there will be a concurrency security issue.
Problem simulation
Assume that Redis Server has a key named test, which stores a json array [1, 2, 3].
Let us simulate the situation where client A and client B access modifications at the same time. The code is as follows:
Client A:
class RedisClientA(username: String, password: String, host: String, port: Int) { val jedis: Jedis init { val pool = JedisPool(JedisPoolConfig(), host, port) jedis = pool.resource jedis.auth(username, password) } fun update(key: String) { val idStr = jedis.get(key) val idList = Json.decodeFromString<MutableList<Int>>(idStr) // 等待2秒,模拟业务 TimeUnit.SECONDS.sleep(2L) idList.add(4) println("new id list: $idList") jedis.set(key, Json.encodeToString(idList)) } fun getVal(key: String): String? { return jedis.get(key) } } fun main() { val key = "test" val redisClientA = RedisClientA("default", "123456", "127.0.0.1", 6379) redisClientA.update(key) val res = redisClientA.getVal(key) println("res: $res") }
Client B:
class RedisClientB(username: String, password: String, host: String, port: Int) { val jedis: Jedis init { val pool = JedisPool(JedisPoolConfig(), host, port) jedis = pool.resource jedis.auth(username, password) } fun update(key: String) { val idStr = jedis.get(key) val idList = Json.decodeFromString<MutableList<Int>>(idStr) idList.add(5) println("new id list: $idList") jedis.set(key, Json.encodeToString(idList)) } fun getVal(key: String): String? { return jedis.get(key) } } fun main() { val key = "test" val redisClientB = RedisClientB("default", "123456", "127.0.0.1", 6379) redisClientB.update(key) val res = redisClientB.getVal(key) println("res: $res") }
Client A blocked for 2 seconds to simulate the processing of time-consuming business logic. Client B accessed "test" during processing and added id:5.
When client A finishes processing the time-consuming business logic, id:4 is added and id:5 will be overwritten.
The final content in "test" is as follows:
CAS to ensure data consistency
Redis' WATCH command Check and Set (CAS) behavior is provided for use with Redis transactions. WATCHed keys will be monitored and it will be discovered whether they have been modified. If at least one monitored object is modified before EXEC is executed, the entire transaction will be canceled and EXEC will return Null replay to indicate transaction execution failure. We just need to repeat the operation and hope that there will be no new competition during this time period. This form of locking is called optimistic locking, and it is a very powerful locking mechanism.
So how to implement CAS? We only need to modify the code in the update() method of RedisClientA as follows:
fun update(key: String) { var flag = true while (flag) { jedis.watch(key) val idStr = jedis.get(key) val idList = Json.decodeFromString<MutableList<Int>>(idStr) // 等待2秒,模拟业务 TimeUnit.SECONDS.sleep(2L) val transaction = jedis.multi() idList.add(4) println("new id list: $idList") transaction.set(key, Json.encodeToString(idList)) transaction.exec()?.let { flag = false } } }
The final content of "test" is as follows:
It can be seen that we use The WATCH and TRANACTION commands use CAS optimistic locking to achieve data consistency.
The above is the detailed content of How Redis uses optimistic locking to ensure data consistency. For more information, please follow other related articles on the PHP Chinese website!

Redis plays a key role in data storage and management, and has become the core of modern applications through its multiple data structures and persistence mechanisms. 1) Redis supports data structures such as strings, lists, collections, ordered collections and hash tables, and is suitable for cache and complex business logic. 2) Through two persistence methods, RDB and AOF, Redis ensures reliable storage and rapid recovery of data.

Redis is a NoSQL database suitable for efficient storage and access of large-scale data. 1.Redis is an open source memory data structure storage system that supports multiple data structures. 2. It provides extremely fast read and write speeds, suitable for caching, session management, etc. 3.Redis supports persistence and ensures data security through RDB and AOF. 4. Usage examples include basic key-value pair operations and advanced collection deduplication functions. 5. Common errors include connection problems, data type mismatch and memory overflow, so you need to pay attention to debugging. 6. Performance optimization suggestions include selecting the appropriate data structure and setting up memory elimination strategies.

The applications of Redis in the real world include: 1. As a cache system, accelerate database query, 2. To store the session data of web applications, 3. To implement real-time rankings, 4. To simplify message delivery as a message queue. Redis's versatility and high performance make it shine in these scenarios.

Redis stands out because of its high speed, versatility and rich data structure. 1) Redis supports data structures such as strings, lists, collections, hashs and ordered collections. 2) It stores data through memory and supports RDB and AOF persistence. 3) Starting from Redis 6.0, multi-threaded I/O operations have been introduced, which has improved performance in high concurrency scenarios.

RedisisclassifiedasaNoSQLdatabasebecauseitusesakey-valuedatamodelinsteadofthetraditionalrelationaldatabasemodel.Itoffersspeedandflexibility,makingitidealforreal-timeapplicationsandcaching,butitmaynotbesuitableforscenariosrequiringstrictdataintegrityo

Redis improves application performance and scalability by caching data, implementing distributed locking and data persistence. 1) Cache data: Use Redis to cache frequently accessed data to improve data access speed. 2) Distributed lock: Use Redis to implement distributed locks to ensure the security of operation in a distributed environment. 3) Data persistence: Ensure data security through RDB and AOF mechanisms to prevent data loss.

Redis's data model and structure include five main types: 1. String: used to store text or binary data, and supports atomic operations. 2. List: Ordered elements collection, suitable for queues and stacks. 3. Set: Unordered unique elements set, supporting set operation. 4. Ordered Set (SortedSet): A unique set of elements with scores, suitable for rankings. 5. Hash table (Hash): a collection of key-value pairs, suitable for storing objects.

Redis's database methods include in-memory databases and key-value storage. 1) Redis stores data in memory, and reads and writes fast. 2) It uses key-value pairs to store data, supports complex data structures such as lists, collections, hash tables and ordered collections, suitable for caches and NoSQL databases.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Dreamweaver Mac version
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

WebStorm Mac version
Useful JavaScript development tools