Go language is a popular open source programming language. It has always been known for its simplicity, efficiency and concurrency performance. Among them, concurrency performance is often praised as one of the biggest highlights of the Go language. So, how does the Go language achieve concurrency performance? The answer is based on the independent concurrent execution (CSP) model in the Go language.
In the traditional concurrency model, a common approach is to use shared memory to achieve communication and synchronization between processes. Although this method can effectively achieve concurrency between processes, since each process shares the same memory space, it can easily cause some errors and unpredictable results, such as deadlocks, race conditions, etc. In order to solve these problems, the Go language adopts a new concurrency model-the Independent Concurrent Execution (CSP) model.
CSP is a concurrency model proposed by Tony Hoare in 1978. Its main idea is to use communication instead of shared memory. In the CSP model, each concurrently executed task is independent, and they do not share the same memory space. Instead, data exchange and coordination are performed through communication. Communication in the CSP model is usually implemented using Channel. Channel can be understood as a pipe for transmitting and synchronizing data. In the Go language, each Channel has its own type and can pass corresponding types of data between different goroutines.
Based on the concurrent execution method of the CSP model, goroutine in the Go language can run independently and communicate and synchronize through Channel. Each goroutine will not be interfered by other goroutines during execution. The communication and synchronization between them are completely realized through Channel, so that efficient, safe and reliable concurrent execution can be achieved.
The goroutine in the Go language is a lightweight execution unit that can run multiple tasks simultaneously in a thread and can be freely created and destroyed dynamically. Compared with traditional threads, the overhead is Smaller and more efficient. Creating a goroutine in the Go language is very simple. You only need to add the keyword go in front of the function, for example:
go func() { // 执行的任务 }()
The above code means creating an anonymous function and executing it in a new goroutine. In this example, we used an anonymous function, but in fact any function can be executed as a goroutine. One of the biggest benefits of using goroutine is that it can make full use of the performance of multi-core CPUs and improve program execution efficiency.
In the Go language, Channel is a mechanism used for communication between goroutines. Channel is essentially a reference type that can be created through the make function, for example:
ch := make(chan int)
The above code creates a Channel named ch, which can pass int type data. When we need to pass data between two goroutines, we only need to send the data to the Channel and receive it in another goroutine. For example:
go func() { ch <- 1 }() // 在当前goroutine中接收数据 val := <-ch
The above code means that the number is sent to one goroutine. 1 is sent to the Channel and this number is received in another goroutine. To send data, use the ch
In addition to basic sending and receiving operations, Channel also provides some advanced features, such as buffered Channel, closing Channel, etc. A buffered Channel can specify the size of the buffer. When the buffer is filled, the send operation will be blocked. Closing the Channel can inform the receiver that the Channel has no data to receive, the receiving operation will no longer block, and the received value is the default value of the Channel type.
In summary, the independent concurrent execution (CSP) model of the Go language is an important means for building efficient, safe, and reliable concurrent programs. Based on the concurrent execution method of the CSP model, the Go language not only provides efficient tools such as goroutine and Channel, but also avoids the problems and hidden dangers in the traditional shared memory concurrency model. By using the CSP model, the Go language can fully utilize the performance of multi-core CPUs and achieve more efficient concurrent execution.
The above is the detailed content of Independent concurrent execution (CSP) model in Go language. For more information, please follow other related articles on the PHP Chinese website!

go语言有缩进。在go语言中,缩进直接使用gofmt工具格式化即可(gofmt使用tab进行缩进);gofmt工具会以标准样式的缩进和垂直对齐方式对源代码进行格式化,甚至必要情况下注释也会重新格式化。

go语言叫go的原因:想表达这门语言的运行速度、开发速度、学习速度(develop)都像gopher一样快。gopher是一种生活在加拿大的小动物,go的吉祥物就是这个小动物,它的中文名叫做囊地鼠,它们最大的特点就是挖洞速度特别快,当然可能不止是挖洞啦。

是,TiDB采用go语言编写。TiDB是一个分布式NewSQL数据库;它支持水平弹性扩展、ACID事务、标准SQL、MySQL语法和MySQL协议,具有数据强一致的高可用特性。TiDB架构中的PD储存了集群的元信息,如key在哪个TiKV节点;PD还负责集群的负载均衡以及数据分片等。PD通过内嵌etcd来支持数据分布和容错;PD采用go语言编写。

go语言能编译。Go语言是编译型的静态语言,是一门需要编译才能运行的编程语言。对Go语言程序进行编译的命令有两种:1、“go build”命令,可以将Go语言程序代码编译成二进制的可执行文件,但该二进制文件需要手动运行;2、“go run”命令,会在编译后直接运行Go语言程序,编译过程中会产生一个临时文件,但不会生成可执行文件。

go语言需要编译。Go语言是编译型的静态语言,是一门需要编译才能运行的编程语言,也就说Go语言程序在运行之前需要通过编译器生成二进制机器码(二进制的可执行文件),随后二进制文件才能在目标机器上运行。

删除map元素的两种方法:1、使用delete()函数从map中删除指定键值对,语法“delete(map, 键名)”;2、重新创建一个新的map对象,可以清空map中的所有元素,语法“var mapname map[keytype]valuetype”。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Zend Studio 13.0.1
Powerful PHP integrated development environment

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.
