search
HomeBackend DevelopmentGolangBuilt-in locks and mutexes in Go language

Built-in locks and mutexes in Go language

Jun 01, 2023 am 08:06 AM
go languageComes with lockmutex

Built-in locks and mutexes in Go language

With the popularity of multi-core processors, multi-threaded programming has become an indispensable part of application development. In multi-threaded programming, locks are an important mechanism used to control concurrent access to shared resources. The Go language provides a wealth of locking mechanisms, the most commonly used of which are built-in locks and mutexes.

Bring your own lock

Bring your own lock is a lock mechanism in the Go language, which is lightweight, easy to use and high-performance. The built-in lock is a variable with competition conditions. That is, when accessing shared resources concurrently, if multiple threads access the variable at the same time, a competition condition will occur. In this case, synchronization is required to avoid inconsistent results.

In the Go language, synchronization operations can be easily performed using the built-in lock. The built-in lock has two important methods, Lock() and Unlock(). The Lock() method is used to acquire the lock. If the lock is already occupied by other threads, the calling thread will enter the blocking state and wait for the lock to be released; Unlock() Method is used to release the lock.

Example of using built-in lock:

var mu sync.Mutex  // 定义一个锁变量
var count int

func main() {
    for i := 0; i < 1000; i++ {
        go add()  // 启动1000个线程,对count进行加1操作
    }
    time.Sleep(time.Second)  // 等待所有线程执行完成
    fmt.Println(count)  // 打印最终结果
}

func add() {
    mu.Lock()  // 获取锁
    count++  // 对共享变量进行操作
    mu.Unlock()  // 释放锁
}

In the above code, a global variable count is used as a shared resource, and it is incremented by 1 by starting 1000 threads. In order to ensure that concurrent access to the count variable will not cause race conditions, a built-in lock is used for synchronization. In the add() function, first call the mu.Lock() method to acquire the lock, operate the shared resource, and then release the lock through the mu.Unlock() method. This ensures that the operation on the count variable is atomic and avoids race conditions.

Mutex

Mutex is another locking mechanism in Go language, which is also used to protect shared resources. Mutexes are similar to built-in locks and can be used to prevent race conditions from occurring, but in comparison, mutexes can lock and unlock operations on more fine-grained blocks of code.

The use of mutex is similar to its own lock. In the Go language, the type of mutex is sync.Mutex, and the prototype is as follows:

type Mutex struct {
    // 包含Mutex的内部结构
}

func (m *Mutex) Lock() {
    // 加锁操作
}

func (m *Mutex) Unlock() {
    // 解锁操作
}

When using a mutex, you also need to add code that requires synchronization between the Lock() and Unlock() methods. blocks to ensure the correctness of shared resources.

Example of using a mutex:

var mu sync.Mutex  // 定义一个互斥量
var count int

func main() {
    for i := 0; i < 1000; i++ {
        go add()  // 启动1000个线程,对count进行加1操作
    }
    time.Sleep(time.Second)  // 等待所有线程执行完成
    fmt.Println(count)  // 打印最终结果
}

func add() {
    mu.Lock()  // 获取锁
    count++  // 对共享变量进行操作
    mu.Unlock()  // 释放锁
}

Similar to the use of built-in locks, a mutex is used in the above code to synchronize access to the shared resource count.

Summary

Built-in locks and mutexes are common synchronization mechanisms in the Go language, used to protect shared resources from concurrent modification. The built-in lock is suitable for locking and unlocking operations on the entire code block, while the mutex can perform locking and unlocking operations on more fine-grained code blocks. In actual development, the appropriate lock mechanism should be selected according to specific needs to ensure the reliability and concurrency of the program.

The above is the detailed content of Built-in locks and mutexes in Go language. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Logging Errors Effectively in Go ApplicationsLogging Errors Effectively in Go ApplicationsApr 30, 2025 am 12:23 AM

Effective Go application error logging requires balancing details and performance. 1) Using standard log packages is simple but lacks context. 2) logrus provides structured logs and custom fields. 3) Zap combines performance and structured logs, but requires more settings. A complete error logging system should include error enrichment, log level, centralized logging, performance considerations, and error handling modes.

Empty Interfaces ( interface{} ) in Go: Use Cases and ConsiderationsEmpty Interfaces ( interface{} ) in Go: Use Cases and ConsiderationsApr 30, 2025 am 12:23 AM

EmptyinterfacesinGoareinterfaceswithnomethods,representinganyvalue,andshouldbeusedwhenhandlingunknowndatatypes.1)Theyofferflexibilityforgenericdataprocessing,asseeninthefmtpackage.2)Usethemcautiouslyduetopotentiallossoftypesafetyandperformanceissues,

Comparing Concurrency Models: Go vs. Other LanguagesComparing Concurrency Models: Go vs. Other LanguagesApr 30, 2025 am 12:20 AM

Go'sconcurrencymodelisuniqueduetoitsuseofgoroutinesandchannels,offeringalightweightandefficientapproachcomparedtothread-basedmodelsinlanguageslikeJava,Python,andRust.1)Go'sgoroutinesaremanagedbytheruntime,allowingthousandstorunconcurrentlywithminimal

Go's Concurrency Model: Goroutines and Channels ExplainedGo's Concurrency Model: Goroutines and Channels ExplainedApr 30, 2025 am 12:04 AM

Go'sconcurrencymodelusesgoroutinesandchannelstomanageconcurrentprogrammingeffectively.1)Goroutinesarelightweightthreadsthatalloweasyparallelizationoftasks,enhancingperformance.2)Channelsfacilitatesafedataexchangebetweengoroutines,crucialforsynchroniz

Interfaces and Polymorphism in Go: Achieving Code ReusabilityInterfaces and Polymorphism in Go: Achieving Code ReusabilityApr 29, 2025 am 12:31 AM

InterfacesandpolymorphisminGoenhancecodereusabilityandmaintainability.1)Defineinterfacesattherightabstractionlevel.2)Useinterfacesfordependencyinjection.3)Profilecodetomanageperformanceimpacts.

What is the role of the 'init' function in Go?What is the role of the 'init' function in Go?Apr 29, 2025 am 12:28 AM

TheinitfunctioninGorunsautomaticallybeforethemainfunctiontoinitializepackagesandsetuptheenvironment.It'susefulforsettingupglobalvariables,resources,andperformingone-timesetuptasksacrossanypackage.Here'showitworks:1)Itcanbeusedinanypackage,notjusttheo

Interface Composition in Go: Building Complex AbstractionsInterface Composition in Go: Building Complex AbstractionsApr 29, 2025 am 12:24 AM

Interface combinations build complex abstractions in Go programming by breaking down functions into small, focused interfaces. 1) Define Reader, Writer and Closer interfaces. 2) Create complex types such as File and NetworkStream by combining these interfaces. 3) Use ProcessData function to show how to handle these combined interfaces. This approach enhances code flexibility, testability, and reusability, but care should be taken to avoid excessive fragmentation and combinatorial complexity.

Potential Pitfalls and Considerations When Using init Functions in GoPotential Pitfalls and Considerations When Using init Functions in GoApr 29, 2025 am 12:02 AM

InitfunctionsinGoareautomaticallycalledbeforethemainfunctionandareusefulforsetupbutcomewithchallenges.1)Executionorder:Multipleinitfunctionsrunindefinitionorder,whichcancauseissuesiftheydependoneachother.2)Testing:Initfunctionsmayinterferewithtests,b

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools