Home > Article > Backend Development > How to use descriptors in Python
A descriptor is a Python object that defines the operations to be performed when accessing the properties of other objects. Through descriptors, you can implement a variety of different behaviors, such as calculating properties, caching property values, and controlling property access. Use descriptors to customize property access behavior and avoid writing duplicate code for each property use.
Attributes of any class, including instance attributes, class attributes and static attributes, can use descriptors. Descriptors in Python programming are advanced features that are very useful for programmers with in-depth understanding of the Python language and advanced programming skills.
Python descriptors are defined by implementing the descriptor protocol. The descriptor protocol is a type of Python object protocol, which defines three methods: __get__()
, __set__()
, and __delete__()
.
When the Python interpreter accesses the properties of an object, it will first check whether the property is a descriptor. If the attribute is a descriptor, call the __get__() method to obtain the attribute value. If the attribute is not a descriptor, the attribute value is returned directly.
If we want to use a Python descriptor to control attribute access behavior, we need to implement __get__()
, __set__()
and # in the descriptor protocol ##__delete__()At least one method in the method. The following is the specific description of these methods:
__get__(self, instance, owner): used to obtain attribute values. If the attribute being accessed is an instance, the instance parameter is the instance object and the owner parameter is the class object. If the attribute being accessed is a class, the instance parameter is None and the owner parameter is the class object.
__set__(self, instance, value): Used to set attribute values. If the attribute value is set by an instance, the instance parameter is the instance object and the value parameter is the value to be set. If the attribute value is set by a class, the instance parameter is None and the value parameter is the value to be set.
__delete__(self, instance): Used to delete attribute values. If the property value being deleted is an instance, the instance parameter is the instance object. If the attribute value is being deleted from a class, the instance parameter is None.
How to use Python descriptors
class SumDescriptor: def __init__(self, a, b): self.a = a self.b = b def __get__(self, instance, owner): return getattr(instance, self.a) + getattr(instance, self.b) class MyClass: def __init__(self, a, b): self.a = a self.b = b self.sum = SumDescriptor('a', 'b')In the above code, SumDescriptor is a descriptor that uses the __get__() method to calculate the sum of the a and b attributes. MyClass is a class that contains properties a and b. It also defines a sum property, which is an instance of SumDescriptor. When we create an instance using MyClass, we can get the sum of the a and b attributes by accessing the sum attribute without having to calculate them manually:
>>> obj = MyClass(1, 2) >>> obj.sum 3Cache attribute valuesAnother common use is caching attribute values. Using descriptors allows you to cache attribute values, thereby improving program performance, especially when the attribute value is a slow calculation or a large amount of data. The following is a sample code for caching property values:
class CachedProperty: def __init__(self, func): self.func = func self.__name__ = func.__name__ def __get__(self, instance, owner): if instance is None: return self value = self.func(instance) setattr(instance, self.__name__, value) return value class MyClass: def __init__(self, data): self._data = data @CachedProperty def processed_data(self): # Perform some slow computation result = ... return resultIn the above code,
CachedProperty is a descriptor that uses the
__get__() method to cache properties value.
MyClass is a class containing
_data attributes, which defines a
processed_data attribute, which uses the
@CachedProperty decorator to implement caching . When we access the
processed_data attribute, if the attribute value already exists in the cache, the cached value will be returned directly. Otherwise, the property value is calculated and stored in the cache.
class ReadOnlyDescriptor: def __init__(self, value): self.value = value def __get__(self, instance, owner): return self.value def __set__(self, instance, value): raise AttributeError("can't set attribute") class MyClass: def __init__(self, data): self._data = ReadOnlyDescriptor(data)In the above code,
ReadOnlyDescriptor is a descriptor that uses the
__set__() method to prohibit Make modifications to properties.
MyClass is a class containing the
_data attribute, which defines a read-only attribute. When we try to modify the
_data attribute, an
AttributeError exception will be thrown.
property decorators, which can be used to define custom property access control . Using the
property decorator, we can convert a method into a read-only property, a writable property, or a read-write property. The following is a sample code for custom attribute access control:
class MyClass: def __init__(self, value): self._value = value @property def value(self): return self._value @value.setter def value(self, new_value): if new_value < 0: raise ValueError("value must be non-negative") self._value = new_value
在上面的代码中,value
方法被转换为一个属性。@property
装饰器将value
方法转换为只读属性,@value.setter
装饰器将value
方法转换为可写属性。当我们尝试对value
属性进行修改时,如果新值小于0
,则引发ValueError
异常。
The above is the detailed content of How to use descriptors in Python. For more information, please follow other related articles on the PHP Chinese website!