search
HomeDatabaseRedisHow to use Redis to implement the like function

MySQL and Redis Advantages and Disadvantages

First of all, let’s talk about the advantages and disadvantages of the two methods: Let’s take MySQL and Redis as examples.

1. Directly write to the database:

Advantages: This method is simple to implement, and only needs to complete the addition, deletion, modification and query of the database;

Disadvantages: The database is under great pressure to read and write , if a popular article receives a large number of likes in a short period of time, directly operating the database will put great pressure on the database and affect efficiency.

2. Use Redis cache:

Advantages: high performance, fast reading and writing speed, alleviating the pressure of database reading and writing;

Disadvantages: complex development, data security cannot be guaranteed The problem is that data will be lost when redis hangs. At the same time, if the data in redis is not synchronized in time, it may be eliminated when redis memory is replaced. However, we don’t need to be so precise about the like data, and losing a little data is not a big problem.

Next, we will give a detailed introduction to the like function from the following three aspects

•Redis cache design

•Database design

•Enable persistent storage of scheduled tasks to the database

1. Redis cache design and implementation

We have introduced how to integrate Redis in the previous article, here I won’t repeat the explanation again. We understand that when performing a like operation, the following data need to be recorded: detailed records of users being liked by other users and records of like operations. In order to facilitate query and access, I used a Hash structure for storage. The storage structure is as follows:

(1) Detailed records of a user being liked by other users: MAP_USER_LIKED is the key value , Liked user id:: Liked user id is filed, 1 or 0 is value

(2) Statistics of the number of likes for a user: MAP_USER_LIKED_COUNT is the key value, and is Like user id is filed, count is value

Part of the code is as follows

/**
* 将用户被其他用户点赞的数据存到redis
*/
@Override
public void saveLiked2Redis(String likedUserId, String likedPostId) {
    String key = RedisKeyUtils.getLikedKey(likedUserId, likedPostId);
    redisTemplate.opsForHash().put(RedisKeyUtils.MAP_KEY_USER_LIKED,key, LikedStatusEnum.LIKE.getCode());
}

//取消点赞
@Override
public void unlikeFromRedis(String likedUserId, String likedPostId) {
    String key = RedisKeyUtils.getLikedKey(likedUserId, likedPostId);
    redisTemplate.opsForHash().put(RedisKeyUtils.MAP_KEY_USER_LIKED,key,LikedStatusEnum.UNLIKE.getCode());
}

/**
* 将被点赞用户的数量+1
*/
@Override
public void incrementLikedCount(String likedUserId) {
    redisTemplate.opsForHash().increment(RedisKeyUtils.MAP_KEY_USER_LIKED_COUNT,likedUserId,1);
}

//-1
@Override
public void decrementLikedCount(String likedUserId) {
    redisTemplate.opsForHash().increment(RedisKeyUtils.MAP_KEY_USER_LIKED_COUNT, likedUserId, -1);
}

/**
* 获取Redis中的用户点赞详情记录
*/
@Override
public List<UserLikeDetail> getLikedDataFromRedis() {
    Cursor<Map.Entry<Object,Object>> scan = redisTemplate.opsForHash().scan(RedisKeyUtils.MAP_KEY_USER_LIKED, ScanOptions.NONE);
    List<UserLikeDetail> list = new ArrayList<>();
    while (scan.hasNext()){
        Map.Entry<Object, Object> entry = scan.next();
        String key = (String) entry.getKey();
        String[] split = key.split("::");
        String likedUserId = split[0];
        String likedPostId = split[1];
        Integer value = (Integer) entry.getValue();
        //组装成 UserLike 对象
        UserLikeDetail userLikeDetail = new UserLikeDetail(likedUserId, likedPostId, value);
        list.add(userLikeDetail);
        //存到 list 后从 Redis 中删除
        redisTemplate.opsForHash().delete(RedisKeyUtils.MAP_KEY_USER_LIKED, key);
    }
    return list;
}

/**
* 获取Redis中的用户被点赞数量
*/
@Override
public List<UserLikCountDTO> getLikedCountFromRedis() {
    Cursor<Map.Entry<Object,Object>> cursor = redisTemplate.opsForHash().scan(RedisKeyUtils.MAP_KEY_USER_LIKED_COUNT, ScanOptions.NONE);
    List<UserLikCountDTO> list = new ArrayList<>();
    while(cursor.hasNext()){
        Map.Entry<Object, Object> map = cursor.next();
        String key = (String) map.getKey();
        Integer value = (Integer) map.getValue();
        UserLikCountDTO userLikCountDTO = new UserLikCountDTO(key,value);
        list.add(userLikCountDTO);
        //存到 list 后从 Redis 中删除
        redisTemplate.opsForHash().delete(RedisKeyUtils.MAP_KEY_USER_LIKED_COUNT,key);
    }
    return list;
}

Redis storage structure is as shown

How to use Redis to implement the like function

How to use Redis to implement the like function

2. Database design

Here we can design two tables just like directly saving the like data to the database:

(1) User Detailed records of likes by other users: user_like_detail

DROP TABLE IF EXISTS `user_like_detail`;
CREATE TABLE `user_like_detail`  (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `liked_user_id` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT &#39;被点赞的用户id&#39;,
  `liked_post_id` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT &#39;点赞的用户id&#39;,
  `status` tinyint(1) NULL DEFAULT 1 COMMENT &#39;点赞状态,0取消,1点赞&#39;,
  `create_time` timestamp(0) NOT NULL DEFAULT CURRENT_TIMESTAMP(0) COMMENT &#39;创建时间&#39;,
  `update_time` timestamp(0) NOT NULL DEFAULT CURRENT_TIMESTAMP(0) ON UPDATE CURRENT_TIMESTAMP(0) COMMENT &#39;修改时间&#39;,
  PRIMARY KEY (`id`) USING BTREE,
  INDEX `liked_user_id`(`liked_user_id`) USING BTREE,
  INDEX `liked_post_id`(`liked_post_id`) USING BTREE
) ENGINE = InnoDB AUTO_INCREMENT = 7 CHARACTER SET = utf8 COLLATE = utf8_general_ci COMMENT = &#39;用户点赞表&#39; ROW_FORMAT = Dynamic;

SET FOREIGN_KEY_CHECKS = 1;

(2) Statistics of the number of likes by users: user_like_count

DROP TABLE IF EXISTS `user_like_count`;
CREATE TABLE `user_like_count`  (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `like_num` int(11) NULL DEFAULT 0,
  PRIMARY KEY (`id`) USING BTREE
) ENGINE = InnoDB AUTO_INCREMENT = 7 CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;

SET FOREIGN_KEY_CHECKS = 1;

3. Enable persistent storage of scheduled tasks to the database

We use Quartz to implement scheduled tasks and store data in Redis into the database. In order to demonstrate the effect, we can set the data to be stored once in one minute or two minutes, depending on the specific business. In the process of synchronizing data, we must first check the data in Redis in the database and discard duplicate data, so that our data will be more accurate.

Part of the code is as follows

//同步redis的用户点赞数据到数据库
@Override
@Transactional
public void transLikedFromRedis2DB() {
    List<UserLikeDetail> list = redisService.getLikedDataFromRedis();
    list.stream().forEach(item->{
        //查重
        UserLikeDetail userLikeDetail = userLikeDetailMapper.selectOne(new LambdaQueryWrapper<UserLikeDetail>()
           .eq(UserLikeDetail::getLikedUserId, item.getLikedUserId())
           .eq(UserLikeDetail::getLikedPostId, item.getLikedPostId()));
        if (userLikeDetail == null){
            userLikeDetail = new UserLikeDetail();
            BeanUtils.copyProperties(item, userLikeDetail);
            //没有记录,直接存入
            userLikeDetail.setCreateTime(LocalDateTime.now());
            userLikeDetailMapper.insert(userLikeDetail);
        }else{
            //有记录,需要更新
            userLikeDetail.setStatus(item.getStatus());
            userLikeDetail.setUpdateTime(LocalDateTime.now());
            userLikeDetailMapper.updateById(item);
        }
    });
}

@Override
@Transactional
public void transLikedCountFromRedis2DB() {
    List<UserLikCountDTO> list = redisService.getLikedCountFromRedis();
    list.stream().forEach(item->{
        UserLikeCount user = userLikeCountMapper.selectById(item.getKey());
        //点赞数量属于无关紧要的操作,出错无需抛异常
        if (user != null){
            Integer likeNum = user.getLikeNum() + item.getValue();
            user.setLikeNum(likeNum);
            //更新点赞数量
            userLikeCountMapper.updateById(user);
        }
    });
}

The above is the detailed content of How to use Redis to implement the like function. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:亿速云. If there is any infringement, please contact admin@php.cn delete
Is Redis Primarily a Database?Is Redis Primarily a Database?May 05, 2025 am 12:07 AM

Redis is primarily a database, but it is more than just a database. 1. As a database, Redis supports persistence and is suitable for high-performance needs. 2. As a cache, Redis improves application response speed. 3. As a message broker, Redis supports publish-subscribe mode, suitable for real-time communication.

Redis: Database, Server, or Something Else?Redis: Database, Server, or Something Else?May 04, 2025 am 12:08 AM

Redisisamultifacetedtoolthatservesasadatabase,server,andmore.Itfunctionsasanin-memorydatastructurestore,supportsvariousdatastructures,andcanbeusedasacache,messagebroker,sessionstorage,andfordistributedlocking.

Redis: Unveiling Its Purpose and Key ApplicationsRedis: Unveiling Its Purpose and Key ApplicationsMay 03, 2025 am 12:11 AM

Redisisanopen-source,in-memorydatastructurestoreusedasadatabase,cache,andmessagebroker,excellinginspeedandversatility.Itiswidelyusedforcaching,real-timeanalytics,sessionmanagement,andleaderboardsduetoitssupportforvariousdatastructuresandfastdataacces

Redis: A Guide to Key-Value Data StoresRedis: A Guide to Key-Value Data StoresMay 02, 2025 am 12:10 AM

Redis is an open source memory data structure storage used as a database, cache and message broker, suitable for scenarios where fast response and high concurrency are required. 1.Redis uses memory to store data and provides microsecond read and write speed. 2. It supports a variety of data structures, such as strings, lists, collections, etc. 3. Redis realizes data persistence through RDB and AOF mechanisms. 4. Use single-threaded model and multiplexing technology to handle requests efficiently. 5. Performance optimization strategies include LRU algorithm and cluster mode.

Redis: Caching, Session Management, and MoreRedis: Caching, Session Management, and MoreMay 01, 2025 am 12:03 AM

Redis's functions mainly include cache, session management and other functions: 1) The cache function stores data through memory to improve reading speed, and is suitable for high-frequency access scenarios such as e-commerce websites; 2) The session management function shares session data in a distributed system and automatically cleans it through an expiration time mechanism; 3) Other functions such as publish-subscribe mode, distributed locks and counters, suitable for real-time message push and multi-threaded systems and other scenarios.

Redis: Exploring Its Core Functionality and BenefitsRedis: Exploring Its Core Functionality and BenefitsApr 30, 2025 am 12:22 AM

Redis's core functions include memory storage and persistence mechanisms. 1) Memory storage provides extremely fast read and write speeds, suitable for high-performance applications. 2) Persistence ensures that data is not lost through RDB and AOF, and the choice is based on application needs.

Redis's Server-Side Operations: What It OffersRedis's Server-Side Operations: What It OffersApr 29, 2025 am 12:21 AM

Redis'sServer-SideOperationsofferFunctionsandTriggersforexecutingcomplexoperationsontheserver.1)FunctionsallowcustomoperationsinLua,JavaScript,orRedis'sscriptinglanguage,enhancingscalabilityandmaintenance.2)Triggersenableautomaticfunctionexecutionone

Redis: Database or Server? Demystifying the RoleRedis: Database or Server? Demystifying the RoleApr 28, 2025 am 12:06 AM

Redisisbothadatabaseandaserver.1)Asadatabase,itusesin-memorystorageforfastaccess,idealforreal-timeapplicationsandcaching.2)Asaserver,itsupportspub/submessagingandLuascriptingforreal-timecommunicationandserver-sideoperations.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use