search
HomeBackend DevelopmentPython TutorialFive ways to implement singleton mode in Python

Python 实现单例模式的五种写法

Singleton Pattern is a commonly used software design pattern. The main purpose of this pattern is to ensure that only one instance of a certain class exists. Singleton objects come in handy when you want only one instance of a certain class to appear in the entire system.

For example, the configuration information of a server program is stored in a file, and the client reads the configuration file information through an AppConfig class. If the contents of the configuration file need to be used in many places during the running of the program, that is to say, instances of the AppConfig object need to be created in many places, which will lead to the existence of multiple AppConfig instance objects in the system, and this will seriously waste memory. resources, especially if the configuration file contains a lot of content.

In fact, for a class like AppConfig, we hope that only one instance object will exist during the running of the program.

In Python, we can use a variety of methods to implement the singleton pattern:

  1. Using modules
  2. Using decorators
  3. Using classes
  4. Implemented based on __new__ method
  5. Implemented based on metaclass method

Let’s follow Detailed introduction:

Using modules

In fact, Python modules are natural singleton mode, because when the module is imported for the first time, a .pyc file will be generated. When imported for the second time, the .pyc file will be loaded directly without executing the module code again.

Therefore, we only need to define the relevant functions and data in a module to get a singleton object.

If we really want a singleton class, we can consider doing this:

class Singleton(object):
 def foo(self):
 pass
singleton = Singleton()

Save the above code in the file mysingleton.py. When you want to use it, directly in Import the object in this file into other files. This object is the object of the singleton mode.

from mysingleton import singleton

Use the decorator

def Singleton(cls):
 _instance = {}
 def _singleton(*args, **kargs):
 if cls not in _instance:
 _instance[cls] = cls(*args, **kargs)
 return _instance[cls]
 return _singleton
@Singleton
class A(object):
 a = 1
 def __init__(self, x=0):
 self.x = x
a1 = A(2)
a2 = A(3)

Use the class

class Singleton(object):
 def __init__(self):
 pass
 @classmethod
 def instance(cls, *args, **kwargs):
 if not hasattr(Singleton, "_instance"):
 Singleton._instance = Singleton(*args, **kwargs)
 return Singleton._instance

Generally, everyone thinks that this completes the singleton mode, but there will be problems when using multi-threading:

class Singleton(object):
 def __init__(self):
 pass
 @classmethod
 def instance(cls, *args, **kwargs):
 if not hasattr(Singleton, "_instance"):
 Singleton._instance = Singleton(*args, **kwargs)
 return Singleton._instance
import threading
def task(arg):
 obj = Singleton.instance()
 print(obj)
for i in range(10):
 t = threading.Thread(target=task,args=[i,])
 t.start()

After the program is executed, the printed result is as follows:

<__main__.Singleton object at 0x02C933D0>
<__main__.Singleton object at 0x02C933D0>
<__main__.Singleton object at 0x02C933D0>
<__main__.Singleton object at 0x02C933D0>
<__main__.Singleton object at 0x02C933D0>
<__main__.Singleton object at 0x02C933D0>
<__main__.Singleton object at 0x02C933D0>
<__main__.Singleton object at 0x02C933D0>
<__main__.Singleton object at 0x02C933D0>
<__main__.Singleton object at 0x02C933D0>

See There is no problem, but it is because the execution speed is too fast. If there are some IO operations in the __init__ method, you will find the problem.

Below we simulate through time.sleep. We add the following code to the __init__ method above:

def __init__(self):
 import time
 time.sleep(1)

After re-executing the program, the results are as follows:

<__main__.Singleton object at 0x034A3410>
<__main__.Singleton object at 0x034BB990>
<__main__.Singleton object at 0x034BB910>
<__main__.Singleton object at 0x034ADED0>
<__main__.Singleton object at 0x034E6BD0>
<__main__.Singleton object at 0x034E6C10>
<__main__.Singleton object at 0x034E6B90>
<__main__.Singleton object at 0x034BBA30>
<__main__.Singleton object at 0x034F6B90>
<__main__.Singleton object at 0x034E6A90>

A problem occurred! Singletons created in the above manner cannot support multi-threading.

Solution: Lock! The unlocked part is executed concurrently, and the locked part is executed serially, which reduces the speed but ensures data security.

import time
import threading
class Singleton(object):
 _instance_lock = threading.Lock()
 def __init__(self):
 time.sleep(1)
 @classmethod
 def instance(cls, *args, **kwargs):
 with Singleton._instance_lock:
 if not hasattr(Singleton, "_instance"):
 Singleton._instance = Singleton(*args, **kwargs)
 return Singleton._instance
def task(arg):
 obj = Singleton.instance()
 print(obj)
for i in range(10):
 t = threading.Thread(target=task,args=[i,])
 t.start()
time.sleep(20)
obj = Singleton.instance()
print(obj)

The print result is as follows:

<__main__.Singleton object at 0x02D6B110>
<__main__.Singleton object at 0x02D6B110>
<__main__.Singleton object at 0x02D6B110>
<__main__.Singleton object at 0x02D6B110>
<__main__.Singleton object at 0x02D6B110>
<__main__.Singleton object at 0x02D6B110>
<__main__.Singleton object at 0x02D6B110>
<__main__.Singleton object at 0x02D6B110>
<__main__.Singleton object at 0x02D6B110>
<__main__.Singleton object at 0x02D6B110>

This is almost the same, but there is still a small problem, that is, when the program is executed, after time.sleep(20) is executed, the object is instantiated below , it is already in singleton mode.

But we still added a lock, which is not good. We will make some optimizations and change the intance method to the following:

@classmethod
def instance(cls, *args, **kwargs):
 if not hasattr(Singleton, "_instance"):
 with Singleton._instance_lock:
 if not hasattr(Singleton, "_instance"):
 Singleton._instance = Singleton(*args, **kwargs)
 return Singleton._instance

In this way, one can support multiple threads The singleton mode is completed.

import time
import threading
class Singleton(object):
 _instance_lock = threading.Lock()
 def __init__(self):
 time.sleep(1)
 @classmethod
 def instance(cls, *args, **kwargs):
 if not hasattr(Singleton, "_instance"):
 with Singleton._instance_lock:
 if not hasattr(Singleton, "_instance"):
 Singleton._instance = Singleton(*args, **kwargs)
 return Singleton._instance
def task(arg):
 obj = Singleton.instance()
 print(obj)
for i in range(10):
 t = threading.Thread(target=task,args=[i,])
 t.start()
time.sleep(20)
obj = Singleton.instance()
print(obj)

The singleton mode implemented in this way has restrictions on use. Later instantiation must be through obj = Singleton.instance()

If obj = Singleton() is used , what you get in this way is not a singleton.

Based on the __new__ method

Through the above example, we can know that when we implement a singleton, we need to add a lock internally to ensure thread safety.

We know that when we instantiate an object, we first execute the __new__ method of the class (when we don’t write it, object.__new__ is called by default), instantiate the object; and then execute the class The __init__ method initializes this object, so we can implement the singleton mode based on this.

import threading
class Singleton(object):
 _instance_lock = threading.Lock()
 def __init__(self):
 pass
 def __new__(cls, *args, **kwargs):
 if not hasattr(Singleton, "_instance"):
 with Singleton._instance_lock:
 if not hasattr(Singleton, "_instance"):
 Singleton._instance = object.__new__(cls)
 return Singleton._instance
obj1 = Singleton()
obj2 = Singleton()
print(obj1,obj2)
def task(arg):
 obj = Singleton()
 print(obj)
for i in range(10):
 t = threading.Thread(target=task,args=[i,])
 t.start()

The print result is as follows:

<__main__.Singleton object at 0x038B33D0> <__main__.Singleton object at 0x038B33D0>
<__main__.Singleton object at 0x038B33D0>
<__main__.Singleton object at 0x038B33D0>
<__main__.Singleton object at 0x038B33D0>
<__main__.Singleton object at 0x038B33D0>
<__main__.Singleton object at 0x038B33D0>
<__main__.Singleton object at 0x038B33D0>
<__main__.Singleton object at 0x038B33D0>
<__main__.Singleton object at 0x038B33D0>
<__main__.Singleton object at 0x038B33D0>
<__main__.Singleton object at 0x038B33D0>

Using this singleton mode, when instantiating the object in the future, the method of instantiating the object is the same as usual obj = Singleton().

Implemented based on metaclass method

Related knowledge:

  1. Classes are created by type. When creating a class, type’s __init__ The method is automatically executed, and the class() executes the __call__ method of type (the __new__ method of the class, the __init__ method of the class).
  2. Objects are created by classes. When creating an object, the __init__ method of the class is automatically executed, and the object() executes the __call__ method of the class.
例子:
class Foo:
 def __init__(self):
 pass
 def __call__(self, *args, **kwargs):
 pass
obj = Foo()
# 执行type的 __call__ 方法,调用 Foo类(是type的对象)的 __new__方法,用于创建对象,然后调用 Foo类(是type的对象)的 __init__方法,用于对对象初始化。
obj()# 执行Foo的 __call__ 方法

Use of metaclass:

class SingletonType(type):
 def __init__(self,*args,**kwargs):
 super(SingletonType,self).__init__(*args,**kwargs)
 def __call__(cls, *args, **kwargs): # 这里的cls,即Foo类
 print('cls',cls)
 obj = cls.__new__(cls,*args, **kwargs)
 cls.__init__(obj,*args, **kwargs) # Foo.__init__(obj)
 return obj
class Foo(metaclass=SingletonType): # 指定创建Foo的type为SingletonType
 def __init__(self,name):
 self.name = name
 def __new__(cls, *args, **kwargs):
 return object.__new__(cls)
obj = Foo('xx')

Implementing singleton mode:

import threading
class SingletonType(type):
 _instance_lock = threading.Lock()
 def __call__(cls, *args, **kwargs):
 if not hasattr(cls, "_instance"):
 with SingletonType._instance_lock:
 if not hasattr(cls, "_instance"):
 cls._instance = super(SingletonType,cls).__call__(*args, **kwargs)
 return cls._instance
class Foo(metaclass=SingletonType):
 def __init__(self,name):
 self.name = name
obj1 = Foo('name')
obj2 = Foo('name')
print(obj1,obj2)

The above is the detailed content of Five ways to implement singleton mode in Python. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
Python's Execution Model: Compiled, Interpreted, or Both?Python's Execution Model: Compiled, Interpreted, or Both?May 10, 2025 am 12:04 AM

Pythonisbothcompiledandinterpreted.WhenyourunaPythonscript,itisfirstcompiledintobytecode,whichisthenexecutedbythePythonVirtualMachine(PVM).Thishybridapproachallowsforplatform-independentcodebutcanbeslowerthannativemachinecodeexecution.

Is Python executed line by line?Is Python executed line by line?May 10, 2025 am 12:03 AM

Python is not strictly line-by-line execution, but is optimized and conditional execution based on the interpreter mechanism. The interpreter converts the code to bytecode, executed by the PVM, and may precompile constant expressions or optimize loops. Understanding these mechanisms helps optimize code and improve efficiency.

What are the alternatives to concatenate two lists in Python?What are the alternatives to concatenate two lists in Python?May 09, 2025 am 12:16 AM

There are many methods to connect two lists in Python: 1. Use operators, which are simple but inefficient in large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use the = operator, which is both efficient and readable; 4. Use itertools.chain function, which is memory efficient but requires additional import; 5. Use list parsing, which is elegant but may be too complex. The selection method should be based on the code context and requirements.

Python: Efficient Ways to Merge Two ListsPython: Efficient Ways to Merge Two ListsMay 09, 2025 am 12:15 AM

There are many ways to merge Python lists: 1. Use operators, which are simple but not memory efficient for large lists; 2. Use extend method, which is efficient but will modify the original list; 3. Use itertools.chain, which is suitable for large data sets; 4. Use * operator, merge small to medium-sized lists in one line of code; 5. Use numpy.concatenate, which is suitable for large data sets and scenarios with high performance requirements; 6. Use append method, which is suitable for small lists but is inefficient. When selecting a method, you need to consider the list size and application scenarios.

Compiled vs Interpreted Languages: pros and consCompiled vs Interpreted Languages: pros and consMay 09, 2025 am 12:06 AM

Compiledlanguagesofferspeedandsecurity,whileinterpretedlanguagesprovideeaseofuseandportability.1)CompiledlanguageslikeC arefasterandsecurebuthavelongerdevelopmentcyclesandplatformdependency.2)InterpretedlanguageslikePythonareeasiertouseandmoreportab

Python: For and While Loops, the most complete guidePython: For and While Loops, the most complete guideMay 09, 2025 am 12:05 AM

In Python, a for loop is used to traverse iterable objects, and a while loop is used to perform operations repeatedly when the condition is satisfied. 1) For loop example: traverse the list and print the elements. 2) While loop example: guess the number game until you guess it right. Mastering cycle principles and optimization techniques can improve code efficiency and reliability.

Python concatenate lists into a stringPython concatenate lists into a stringMay 09, 2025 am 12:02 AM

To concatenate a list into a string, using the join() method in Python is the best choice. 1) Use the join() method to concatenate the list elements into a string, such as ''.join(my_list). 2) For a list containing numbers, convert map(str, numbers) into a string before concatenating. 3) You can use generator expressions for complex formatting, such as ','.join(f'({fruit})'forfruitinfruits). 4) When processing mixed data types, use map(str, mixed_list) to ensure that all elements can be converted into strings. 5) For large lists, use ''.join(large_li

Python's Hybrid Approach: Compilation and Interpretation CombinedPython's Hybrid Approach: Compilation and Interpretation CombinedMay 08, 2025 am 12:16 AM

Pythonusesahybridapproach,combiningcompilationtobytecodeandinterpretation.1)Codeiscompiledtoplatform-independentbytecode.2)BytecodeisinterpretedbythePythonVirtualMachine,enhancingefficiencyandportability.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software