search
HomeTechnology peripheralsAI​GPT acts as a brain, directing multiple models to collaborate to complete various tasks. The general system AutoML-GPT is here.

Currently, although AI models have been involved in a very wide range of application fields, most AI models are designed for specific tasks, and they often require a lot of manpower to complete the correct model architecture, optimization algorithms and hyperparameters. . After ChatGPT and GPT-4 became popular, people saw the huge potential of large language models (LLM) in text understanding, generation, interaction, reasoning, etc. Some researchers try to use LLM to explore new paths towards artificial general intelligence (AGI).

Recently, researchers from the University of Texas at Austin proposed a new idea - to develop task-oriented prompts and use LLM to automate the training pipeline, and based on this Idea launches a new system AutoML-GPT.

​GPT acts as a brain, directing multiple models to collaborate to complete various tasks. The general system AutoML-GPT is here.

Paper address:

https: //www.php.cn/link/39d4b545fb02556829aab1db805021c3

AutoML-GPT uses GPT as a bridge between various AI models and uses optimized hyperparameters to dynamically train the model. AutoML-GPT dynamically receives user requests from Model Card [Mitchell et al., 2019] and Data Card [Gebru et al., 2021] and composes corresponding prompt paragraphs. Finally, AutoML-GPT uses this prompt paragraph to automatically perform multiple experiments, including processing data, building model architecture, tuning hyperparameters, and predicting training logs.

AutoML-GPT solves complex AI tasks across a variety of tests and datasets by maximizing its powerful NLP capabilities and existing AI models. A large number of experiments and ablation studies have shown that AutoML-GPT is versatile and effective for many artificial intelligence tasks (including CV tasks and NLP tasks).

Introduction to AutoML-GPT

AutoML-GPT is a collaborative system that relies on data and model information to format prompt input paragraphs. Among them, LLM serves as the controller, and multiple expert models serve as collaborative executors. The workflow of AutoML-GPT includes four stages: data processing, model architecture design, hyperparameter adjustment and training log generation.

Specifically, the working mechanism of AutoML-GPT is as follows:

​GPT acts as a brain, directing multiple models to collaborate to complete various tasks. The general system AutoML-GPT is here.

  • Through Model Card and Data Card generate fixed-format prompt paragraphs
  • Build a training pipeline to handle user needs on the selected data set and model architecture
  • Generate performance training logs and adjust hyperparameters
  • Adjust the model based on auto-suggested hyperparameters

Input Decomposition

The first stage of AutoML-GPT is for LLM to accept user input. In order to improve the performance of LLM and generate effective prompts, this study adopts specific instructions for input prompts. These instructions include three parts: Data Card, Model Card, Evaluation Metrics and Additional Requirements.

As shown in Figure 2 below, the key parts of the Data Card consist of the data set name, input data set type (such as image data or text data), label space (such as category or resolution) and default evaluation indicators.

​GPT acts as a brain, directing multiple models to collaborate to complete various tasks. The general system AutoML-GPT is here.

As shown in Figure 3 below, the Model Card consists of the model name, model structure, model description and architecture hyperparameters. By providing this information, the Model Card can tell LLM which models are used throughout the machine learning system, as well as the user's preferences for model architecture.

​GPT acts as a brain, directing multiple models to collaborate to complete various tasks. The general system AutoML-GPT is here.

In addition to Data Card and Model Card, users can also choose to request more evaluation benchmarks, evaluation metrics, or any constraints. AutoML-GPT provides these task specifications as high-level instructions to LLM for analyzing user requirements accordingly.

When there is a series of tasks that need to be processed, AutoML-GPT needs to match the corresponding model for each task. In order to achieve this goal, the system first needs to obtain the model description from the Model Card and user input.

AutoML-GPT then uses the in-context task-model assignment mechanism to dynamically assign models to tasks. This approach enables incremental model access and provides greater openness and flexibility by combining model description with a better understanding of user needs.

Adjust hyperparameters using prediction training logs

AutoML-GPT sets hyperparameters based on Data Card and Model Card, And predict performance by generating training logs of hyperparameters. The system automatically performs training and returns training logs. Model performance training logs on the dataset record various metrics and information collected during the training process, which helps understand the model training progress, identify potential problems, and evaluate the effectiveness of the selected architecture, hyperparameters, and optimization methods .

Experiments

To evaluate the performance of AutoML-GPT, this study uses ChatGPT (OpenAI’s GPT-4 version) to implement it and conducts multiple experiments from multiple This perspective shows the effect of AutoML-GPT.

Figure 4 below shows the results of training on an unknown data set using AutoML-GPT:

​GPT acts as a brain, directing multiple models to collaborate to complete various tasks. The general system AutoML-GPT is here.

Figure 5 below shows the process of AutoML-GPT completing the target detection task on the COCO data set:

​GPT acts as a brain, directing multiple models to collaborate to complete various tasks. The general system AutoML-GPT is here.

Figure 6 below shows AutoML-GPT Experimental results on the NQ Open Dataset (Natural Questions Open dataset, [Kwiatkowski et al., 2019]):

​GPT acts as a brain, directing multiple models to collaborate to complete various tasks. The general system AutoML-GPT is here.

This study also used XGBoost evaluated AutoML-GPT on the UCI Adult data set [Dua and Graff, 2017] to explore its performance on classification tasks. The experimental results are shown in Figure 7 below:

​GPT acts as a brain, directing multiple models to collaborate to complete various tasks. The general system AutoML-GPT is here.

Interested readers can read the original text of the paper to learn more research details.

The above is the detailed content of ​GPT acts as a brain, directing multiple models to collaborate to complete various tasks. The general system AutoML-GPT is here.. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
2023年机器学习的十大概念和技术2023年机器学习的十大概念和技术Apr 04, 2023 pm 12:30 PM

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

人工智能自动获取知识和技能,实现自我完善的过程是什么人工智能自动获取知识和技能,实现自我完善的过程是什么Aug 24, 2022 am 11:57 AM

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

超参数优化比较之网格搜索、随机搜索和贝叶斯优化超参数优化比较之网格搜索、随机搜索和贝叶斯优化Apr 04, 2023 pm 12:05 PM

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠​审校 | 孙淑娟​简介​通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。​顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

得益于OpenAI技术,微软必应的搜索流量超过谷歌得益于OpenAI技术,微软必应的搜索流量超过谷歌Mar 31, 2023 pm 10:38 PM

截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。 3月23日消息,外媒报道称,分析公司Similarweb的数据显示,在整合了OpenAI的技术后,微软旗下的必应在页面访问量方面实现了更多的增长。​​​​截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。这些数据是微软在与谷歌争夺生

荣耀的人工智能助手叫什么名字荣耀的人工智能助手叫什么名字Sep 06, 2022 pm 03:31 PM

荣耀的人工智能助手叫“YOYO”,也即悠悠;YOYO除了能够实现语音操控等基本功能之外,还拥有智慧视觉、智慧识屏、情景智能、智慧搜索等功能,可以在系统设置页面中的智慧助手里进行相关的设置。

人工智能在教育领域的应用主要有哪些人工智能在教育领域的应用主要有哪些Dec 14, 2020 pm 05:08 PM

人工智能在教育领域的应用主要有个性化学习、虚拟导师、教育机器人和场景式教育。人工智能在教育领域的应用目前还处于早期探索阶段,但是潜力却是巨大的。

30行Python代码就可以调用ChatGPT API总结论文的主要内容30行Python代码就可以调用ChatGPT API总结论文的主要内容Apr 04, 2023 pm 12:05 PM

阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。 阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。使用 Python 和 C

人工智能在生活中的应用有哪些人工智能在生活中的应用有哪些Jul 20, 2022 pm 04:47 PM

人工智能在生活中的应用有:1、虚拟个人助理,使用者可通过声控、文字输入的方式,来完成一些日常生活的小事;2、语音评测,利用云计算技术,将自动口语评测服务放在云端,并开放API接口供客户远程使用;3、无人汽车,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目标;4、天气预测,通过手机GPRS系统,定位到用户所处的位置,在利用算法,对覆盖全国的雷达图进行数据分析并预测。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor