Title meaning: The sum (S) of all positive factors of 2004^x is the remainder of 29; output the result;
Original question link
Title analysis: Analysis reference source: Click to open The factors linking
and
are 1,2,3,6; the sum of the factors of 6 is s(6)=1 2 3 6=12;
The factors of 20 are 1,2,4,5,10,20; the sum of the factors of 20 is s(20)=1 2 4 5 10 20=42; the factors of
2 are 1,2; 2 The sum of the factors of is s(2)=1 2=3;
The factors of 3 are 1,3; The sum of the factors of 3 is s(3)=1 3=4;
4 The sum of the factors is
s(4)=1 2 4=7; The sum of the factors of
5 is
s(5)=1 5=6;
s( 6)=s(2)*s(3)=3*4=12;
s(20)=s(4)*s(5)=7*6=42;
Is this a coincidence?
Look at s(50)=1 2 5 10 25 50=93=3*31=s(2)*s(25),s(25)=1 5 25=31.
This is called the product function in number theory. When gcd(a,b)=1, s(a*b)=s(a)*s(b);
If p is a prime number
s(p^n)=1 p p^2 ... p^n=(p^(n 1)-1) /(p-1) (1)
Example hdu1452 Happy2004
Calculate factor sum s(2004^X) mod 29,
2004=2^2 *3 *167
s(2004^X) ) = (s (2^2X))) *(s(3^X))) * (s(167^X)))
167)=22;
s(2004^X) ) = (s(2^2X))) *(s(3^X))) * (s(22^X)))
a=s(2^2X)=(2^( 2X 1)-1)//According to (1)
b=s(3^X)= (3^(X 1)-1)/2//According to (1)
c=s(22^X)= (22^(X 1)-1)/21//According to (1)
% algorithm
1. (a*b) %p= ( a%p) *(b%p)
% algorithm
2. (a/b) %p= ( a *b^(-1)%p)
b^(-1) is the inverse element of
b (%p). The inverse element of
2 is 15 ()), because 2*15=30 % 29=1 % 29
The inverse element of21 is 18 ()), because 21*18=378% 29 =1 % 29
Therefore
a=(powi(2,2*x 1, 29)-1));
b=(powi(3,x 1,29)-1)*15 );
c=(powi(22,x 1,29) -1)*18 );
ans=(a*b)% 29*c % 29;
Data expansion: 1.
Higher power Quick Model Link
2. Jacking Function : The Jiming Function of the Division Theory: For a positive integer n
f(n), if f(1)=1, and when
a,b are relatively prime, f(ab)=f(a )f(b), it is called a product function in number theory. like
may be said to be complete. If
n is expressed as a prime factor decomposition formula; 3. Find the inverse element:
When calculating (a/b)%Mod, it is often necessary to calculate b%Mod first Inverse element p (the condition for b to have an inverse element is gcd(b,Mod)==1, obviously prime numbers must have inverse elements), and then get the result c from (a*p)%Mod
. Here
the inverse element p of b satisfies (b*p)%Mod=1. Let’s briefly prove it first:
(a/b)%Mod=c; (b*p)%Mod=1; ==》 (a/b)*(b*p) %Mod=c; == 》 (a*p)%Mod=c;
From the above we can see the correctness of the conclusion, of course b needs to be a factor of a . Next, we need to know how to calculate the inverse element p based on b and Mod. Everyone should be familiar with the extended Euclidean algorithm, which is used to find a set of solutions (x, y) when a and b are known, such that a*x b*y=1. x and y are respectively the inverse element of a modulo b and the inverse element of b modulo a, which can be verified by modulo b or a.The reasons are explained below:Modulo m multiplicative inverse elementDefinition: For integers a, m, if there is an integer b, it satisfies ab ≡ 1(mod m), then it is said that b is the multiplicative inverse of a modulo m.Theorem: The necessary and sufficient condition for a to have a multiplicative inverse modulo m is gcd(a,m) = 1
Sufficiency:because##gcd(a,m) = 1According to Euler’s theorem, there is##a^φ(m) ≡ 1(mod m)Therefore##a * a^ (φ(m)-1) mod m = 1So there is a modulo m multiplicative inverse of a, that is, a^( φ(m)-1)Necessity:
Suppose there is a multiplicative inverse of a modulo m that is b, then
ab ≡ 1 (mod m)
##so
ab = km 1
##so
1 = ab - km
By Euclid Obtain the theorem, there is
gcd(a,m) = 1
It is known from the theorem:
##For ax by = 1, it can be seen that x is a The multiplicative inverse modulo b, y is the multiplicative inverse of b modulo a.Conversely, to calculate the multiplicative inverse of a modulo b is equivalent to finding the smallest positive integer solution of x for ax by = 1, Thus it can be solved into a linear indefinite equation.
Specific reference: http://blog.csdn.net/synapse7/article/details/9901195 Call ExtGcd (b, Mod, x, y), x is the inverse element p of b%Mod.There is another way to find the inverse element p of b%Mod, that is, p=b^(Mod-2)%Mod, because b^(Mod-1)%Mod=1 (Mod needs to be a prime number here). Error analysis: 1: if(y&1)ans*=x);//Ans=x*x) in the test by mistake) 2. The data type must be __int64,
Code implementation:
#include<cstdio> #include<cstdlib> using namespace std; typedef __int64 ll; ll powmol(ll x,ll y)//高次幂取模的求x^ymod29 { ll ans=1; x=x%29; while(y) { if(y&1)ans*=x%29;//y是奇数情况的处理; x=x*x%29; y>>=1;// } return ans; } int main() { ll x,a,b,c; while(scanf("%I64d",&x),x) { a=(powmol(2,2*x+1)-1)%29; b=(powmol(3,x+1)-1)*15%29; c=(powmol(22,x+1)-1)*18%29; printf("%I64d\n",(a*b)%29*c%29); } return 0; }</cstdlib></cstdio>
The above is the detailed content of Java high-order power modulus + product function + inverse method. For more information, please follow other related articles on the PHP Chinese website!

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于结构化数据处理开源库SPL的相关问题,下面就一起来看一下java下理想的结构化数据处理类库,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于PriorityQueue优先级队列的相关知识,Java集合框架中提供了PriorityQueue和PriorityBlockingQueue两种类型的优先级队列,PriorityQueue是线程不安全的,PriorityBlockingQueue是线程安全的,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于java锁的相关问题,包括了独占锁、悲观锁、乐观锁、共享锁等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于多线程的相关问题,包括了线程安装、线程加锁与线程不安全的原因、线程安全的标准类等等内容,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于枚举的相关问题,包括了枚举的基本操作、集合类对枚举的支持等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Java的相关知识,其中主要介绍了关于关键字中this和super的相关问题,以及他们的一些区别,下面一起来看一下,希望对大家有帮助。

封装是一种信息隐藏技术,是指一种将抽象性函式接口的实现细节部分包装、隐藏起来的方法;封装可以被认为是一个保护屏障,防止指定类的代码和数据被外部类定义的代码随机访问。封装可以通过关键字private,protected和public实现。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于平衡二叉树(AVL树)的相关知识,AVL树本质上是带了平衡功能的二叉查找树,下面一起来看一下,希望对大家有帮助。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Dreamweaver Mac version
Visual web development tools

SublimeText3 Chinese version
Chinese version, very easy to use

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

SublimeText3 Linux new version
SublimeText3 Linux latest version
