search
HomeOperation and MaintenanceLinux Operation and MaintenanceHow to use the compilation command of linux system

The compilation command of the Linux system is "Make". In Linux systems, make is a very important compilation command. Administrators use it to compile and install many open source tools through the command line. Programmers use it to manage the compilation issues of their large and complex projects. Make is used to automate the task of compiling large programs. It can automatically detect the parts of the program that need to be recompiled and issue corresponding compilation instructions.

Introduction to Make

make is a utility program for Linux systems. It is used to manage the automatic compilation tasks of large programs, automatically determine which part of the program needs to be recompiled, and send compilation instructions. Although, we most commonly use it in the compilation of C language programs. However, make is not limited to a specific language. Make can be used in any language that can run the compiler through a shell command. In addition, you can even use make to describe any build task where a file needs to be automatically updated after the files it depends on change.

How Make Works

For those unfamiliar with the mechanics behind it, the Make command accepts targets just like command line arguments. Typically, these operations are stored in a special file called a "Makefile" and correspond to the target. For more information, read this series of articles on how Makefiles work.

The first time the Make command is executed, the Makefile will be scanned to find the target and corresponding dependencies. If these dependencies also need to be compiled into the target, continue to scan the Makefile and establish their dependencies, and then compile. Once the main dependencies have finished compiling, the main target is compiled (this is entered via the make command).

Now, assuming you have modified a certain source file and you execute the make command again, it will only compile the target file related to the source file. Therefore, compiling the final executable file saves a lot of money. time.

>Make command example

The following is the test environment used in this article:

OS —— Ubunut 13.04
Shell —— Bash 4.2.45
Application —— GNU Make 3.81

The following is the content of the project:

$ ls 
anotherTest.c Makefile test.c test.h

The following is the content of the Makefile:

all: test test: test.o anotherTest.o 
    gcc -Wall test.o anotherTest.o -o testtest.o: test.c 
    gcc -c -Wall test.c 

anotherTest.o: anotherTest.c 
    gcc -c -Wall anotherTest.c 

clean: 
    rm -rf *.o test

Now let’s look at some examples of make command applications under Linux:

1. A simple example

To compile the entire project, you can simply use make or follow the make command with the target all.

$ make 
gcc -c -Wall test.c 
gcc -c -Wall anotherTest.c 
gcc -Wall test.o anotherTest.o -o test

You can see the dependencies created for the first time by the make command and the actual targets.

If you check the directory contents again, there are some more .o files and executable files in it:

$ ls 
anotherTest.c anotherTest.o Makefile test test.c test.h test.o

Now, assuming you have made some modifications to the test.c file, use make to compile the project again :

$ make 
gcc -c -Wall test.c 
gcc -Wall test.o anotherTest.o -o test

You can see that only test.o is recompiled, but the other Test.o is not recompiled.

Now clean all target files and executable file test, you can use target clean:

$ make clean
rm -rf *.o test$ ls
anotherTest.c Makefile test.c test.h

You can see all .o files and executable file test All have been deleted.

2. Pass the -B option to make all targets always rebuild

By now, you may have noticed that the make command does not compile those files that have been compiled since the last build. There are no changed files, but if you want to override the default behavior of make, you can use the -B option.

The following is an example:

$ make
make: Nothing to be done for `all’.$ make -B
gcc -c -Wall test.c
gcc -c -Wall anotherTest.c
gcc -Wall test.o anotherTest.o -o test

You can see that although the make command will not compile any files, make -B will force compilation of all target files and the final execution document.

3. Use the -d option to print debugging information

If you want to know what make actually does when it is executed, use the -d option.

Here is an example:

$ make -d | more
GNU Make 3.81
Copyright (C) 2006 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.

This program built for x86_64-pc-linux-gnu
Reading makefiles…
Reading makefile `Makefile’…
Updating makefiles….
Considering target file `Makefile’.
Looking for an implicit rule for `Makefile’.
Trying pattern rule with stem `Makefile’.
Trying implicit prerequisite `Makefile.o’.
Trying pattern rule with stem `Makefile’.
Trying implicit prerequisite `Makefile.c’.
Trying pattern rule with stem `Makefile’.
Trying implicit prerequisite `Makefile.cc’.
Trying pattern rule with stem `Makefile’.
Trying implicit prerequisite `Makefile.C’.
Trying pattern rule with stem `Makefile’.
Trying implicit prerequisite `Makefile.cpp’.
Trying pattern rule with stem `Makefile’.
--More--

This is a very long output, you also saw that I used the more command to display the output page by page.

4. Use the -C option to change the directory

You can provide a different directory path for the make command, and the directory will be switched before searching for the Makefile.

This is a directory, assuming you are in the current directory:

$ ls 
file file2 frnd frnd1.cpp log1.txt log3.txt log5.txt
file1 file name with spaces frnd1 frnd.cpp log2.txt log4.txt

But the Makefile of the make command you want to run is saved in the ../make-dir/ directory, you can Do this:

$ make -C ../make-dir/ 
make: Entering directory `/home/himanshu/practice/make-dir’ 
make: Nothing to be done for `all’. 
make: Leaving directory `/home/himanshu/practice/make-dir

You can see that the make command first switches to a specific directory, executes it there, and then switches back.

5. Use the -f option to treat other files as Makefiles

If you want to rename the Makefile file, such as my_makefile or other names, we If you want make to treat it as a Makefile, use the -f option.

make -f my_makefile

With this method, the make command will choose to scan my_makefile instead of Makefile.

The above is the detailed content of How to use the compilation command of linux system. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:亿速云. If there is any infringement, please contact admin@php.cn delete
Linux Operations: Security and User ManagementLinux Operations: Security and User ManagementMay 06, 2025 am 12:04 AM

Linux user management and security can be achieved through the following steps: 1. Create users and groups, using commands such as sudouseradd-m-gdevelopers-s/bin/bashjohn. 2. Bulkly create users and set password policies, using the for loop and chpasswd commands. 3. Check and fix common errors, home directory and shell settings. 4. Implement best practices such as strong cryptographic policies, regular audits and the principle of minimum authority. 5. Optimize performance, use sudo and adjust PAM module configuration. Through these methods, users can be effectively managed and system security can be improved.

Linux Operations: File System, Processes, and MoreLinux Operations: File System, Processes, and MoreMay 05, 2025 am 12:16 AM

The core operations of Linux file system and process management include file system management and process control. 1) File system operations include creating, deleting, copying and moving files or directories, using commands such as mkdir, rmdir, cp and mv. 2) Process management involves starting, monitoring and killing processes, using commands such as ./my_script.sh&, top and kill.

Linux Operations: Shell Scripting and AutomationLinux Operations: Shell Scripting and AutomationMay 04, 2025 am 12:15 AM

Shell scripts are powerful tools for automated execution of commands in Linux systems. 1) The shell script executes commands line by line through the interpreter to process variable substitution and conditional judgment. 2) The basic usage includes backup operations, such as using the tar command to back up the directory. 3) Advanced usage involves the use of functions and case statements to manage services. 4) Debugging skills include using set-x to enable debugging mode and set-e to exit when the command fails. 5) Performance optimization is recommended to avoid subshells, use arrays and optimization loops.

Linux Operations: Understanding the Core FunctionalityLinux Operations: Understanding the Core FunctionalityMay 03, 2025 am 12:09 AM

Linux is a Unix-based multi-user, multi-tasking operating system that emphasizes simplicity, modularity and openness. Its core functions include: file system: organized in a tree structure, supports multiple file systems such as ext4, XFS, Btrfs, and use df-T to view file system types. Process management: View the process through the ps command, manage the process using PID, involving priority settings and signal processing. Network configuration: Flexible setting of IP addresses and managing network services, and use sudoipaddradd to configure IP. These features are applied in real-life operations through basic commands and advanced script automation, improving efficiency and reducing errors.

Linux: Entering and Exiting Maintenance ModeLinux: Entering and Exiting Maintenance ModeMay 02, 2025 am 12:01 AM

The methods to enter Linux maintenance mode include: 1. Edit the GRUB configuration file, add "single" or "1" parameters and update the GRUB configuration; 2. Edit the startup parameters in the GRUB menu, add "single" or "1". Exit maintenance mode only requires restarting the system. With these steps, you can quickly enter maintenance mode when needed and exit safely, ensuring system stability and security.

Understanding Linux: The Core Components DefinedUnderstanding Linux: The Core Components DefinedMay 01, 2025 am 12:19 AM

The core components of Linux include kernel, shell, file system, process management and memory management. 1) Kernel management system resources, 2) shell provides user interaction interface, 3) file system supports multiple formats, 4) Process management is implemented through system calls such as fork, and 5) memory management uses virtual memory technology.

The Building Blocks of Linux: Key Components ExplainedThe Building Blocks of Linux: Key Components ExplainedApr 30, 2025 am 12:26 AM

The core components of the Linux system include the kernel, file system, and user space. 1. The kernel manages hardware resources and provides basic services. 2. The file system is responsible for data storage and organization. 3. Run user programs and services in the user space.

Using Maintenance Mode: Troubleshooting and Repairing LinuxUsing Maintenance Mode: Troubleshooting and Repairing LinuxApr 29, 2025 am 12:28 AM

Maintenance mode is a special operating level entered in Linux systems through single-user mode or rescue mode, and is used for system maintenance and repair. 1. Enter maintenance mode and use the command "sudosystemctlisolaterscue.target". 2. In maintenance mode, you can check and repair the file system and use the command "fsck/dev/sda1". 3. Advanced usage includes resetting the root user password, mounting the file system in read and write mode and editing the password file.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor