Golang is a modern programming language that has been widely used in many fields through its concurrency capabilities and efficient memory management. In golang, sorting is one of the common operations, and the sorting algorithm is also a relatively basic data structure and algorithm.
Golang provides some built-in sorting functions, such as the common sort.Ints in the sort package, which can sort integer slices. Additionally, we can also use sort.Strings to sort string slices. But in some scenarios, we need to write our own sorting function to meet specific sorting requirements. In this case, we need to understand the sorting algorithm and the sorting method provided by golang.
- Built-in sorting function
The sorting functions provided in golang are very convenient. For example, sort.Ints and sort.Strings provided by the sort package are very common. The following is an example of using sort.Ints for sorting:
package main import ( "fmt" "sort" ) func main() { nums := []int{3, 2, 1, 4, 5, 7, 6} sort.Ints(nums) fmt.Println(nums) }
The output result is: [1 2 3 4 5 6 7]
We can also use sort.Strings to sort strings :
package main import ( "fmt" "sort" ) func main() { strs := []string{"a", "c", "b", "d", "f", "e"} sort.Strings(strs) fmt.Println(strs) }
The output result is: [a b c d e f]
- Bubble sort algorithm
Bubble sort is a basic sorting algorithm and a comparison Easy to understand and implement. The basic principle is to compare adjacent elements, and swap positions if the order is wrong. After one round of sorting, the maximum or minimum value will reach the end of the sequence, and this process is repeated until all elements are in order. The following is the bubble sort algorithm implemented using go:
package main import "fmt" func bubbleSort(nums []int) { for i := len(nums)-1; i > 0; i-- { for j := 0; j < i; j++ { if nums[j] > nums[j+1] { nums[j], nums[j+1] = nums[j+1], nums[j] } } } } func main() { nums := []int{3,2,1,4,5,7,6} bubbleSort(nums) fmt.Println(nums) }
The output result is: [1 2 3 4 5 6 7]
- Quick sort algorithm
Quick sort is another common sorting algorithm. The basic principle is to divide the sequence to be sorted into two parts through one sorting. One part is smaller than the reference element, the other part is larger than the reference element, and then the two parts are quickly processed separately. Sort and finally get an ordered sequence. In the Go language, quick sorting is also relatively easy to implement. The code is as follows:
package main import "fmt" func quickSort(nums []int) []int { if len(nums) <= 1 { return nums } pivot := nums[0] var left, right []int for _, num := range nums[1:] { if num < pivot { left = append(left, num) } else { right = append(right, num) } } left = quickSort(left) right = quickSort(right) return append(append(left, pivot), right...) } func main() { nums := []int{3, 2, 1, 4, 5, 7, 6} nums = quickSort(nums) fmt.Println(nums) }
The output result is: [1 2 3 4 5 6 7]
- Merge sort algorithm
Merge sort is another relatively fast sorting algorithm. The basic principle is to divide the sequence to be sorted into two sequences, sort them separately and then merge them. Compared with the quick sort algorithm, merge sort does not require element exchange, so it can achieve "stable" sorting results. In golang, we can use recursion to implement the merge sort algorithm. The code is as follows:
package main import "fmt" func mergeSort(nums []int) []int { if len(nums) <= 1 { return nums } mid := len(nums) / 2 left, right := nums[:mid], nums[mid:] left = mergeSort(left) right = mergeSort(right) return merge(left, right) } func merge(left, right []int) []int { merged := make([]int, 0, len(left)+len(right)) for len(left) > 0 && len(right) > 0 { if left[0] <= right[0] { merged = append(merged, left[0]) left = left[1:] } else { merged = append(merged, right[0]) right = right[1:] } } merged = append(merged, left...) merged = append(merged, right...) return merged } func main() { nums := []int{3, 2, 1, 4, 5, 7, 6} nums = mergeSort(nums) fmt.Println(nums) }
The output result is: [1 2 3 4 5 6 7]
Summary:
In golang, we can use the built-in sort function to perform basic sorting operations. For some more complex sorting requirements, we can choose the corresponding sorting algorithm to implement according to the specific situation. Common sorting algorithms include bubble sort, quick sort and merge sort. When implementing, attention should be paid to the complexity and stability of the algorithm.
The above is the detailed content of How to sort in golang. For more information, please follow other related articles on the PHP Chinese website!

This article explains Go's package import mechanisms: named imports (e.g., import "fmt") and blank imports (e.g., import _ "fmt"). Named imports make package contents accessible, while blank imports only execute t

This article details efficient conversion of MySQL query results into Go struct slices. It emphasizes using database/sql's Scan method for optimal performance, avoiding manual parsing. Best practices for struct field mapping using db tags and robus

This article explains Beego's NewFlash() function for inter-page data transfer in web applications. It focuses on using NewFlash() to display temporary messages (success, error, warning) between controllers, leveraging the session mechanism. Limita

This article explores Go's custom type constraints for generics. It details how interfaces define minimum type requirements for generic functions, improving type safety and code reusability. The article also discusses limitations and best practices

This article demonstrates creating mocks and stubs in Go for unit testing. It emphasizes using interfaces, provides examples of mock implementations, and discusses best practices like keeping mocks focused and using assertion libraries. The articl

This article details efficient file writing in Go, comparing os.WriteFile (suitable for small files) with os.OpenFile and buffered writes (optimal for large files). It emphasizes robust error handling, using defer, and checking for specific errors.

The article discusses writing unit tests in Go, covering best practices, mocking techniques, and tools for efficient test management.

This article explores using tracing tools to analyze Go application execution flow. It discusses manual and automatic instrumentation techniques, comparing tools like Jaeger, Zipkin, and OpenTelemetry, and highlighting effective data visualization


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

Notepad++7.3.1
Easy-to-use and free code editor

Atom editor mac version download
The most popular open source editor

WebStorm Mac version
Useful JavaScript development tools

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment
