search
HomeOperation and MaintenanceNginxHow Nginx implements polling algorithm

Simple polling algorithm

This algorithm is relatively simple. For example, you have three servers

First Server 192.168.1.1
Second server 192.168.1.2
Third server Server 192.168.1.3

After the first request comes, it will access the first server by default, the second request will access the second server, and the third server The first request comes to access the third station, the fourth request comes to access the first station, and so on. The following is a simple algorithm implemented by my code:

public class simplepolling {

  /**
   * key是ip
   */
  public static list <string> ipservice = new linkedlist <>();
  static {
    ipservice.add("192.168.1.1");
    ipservice.add("192.168.1.2");
    ipservice.add("192.168.1.3");
  }
  public static int pos = 0;
  public static string getip(){
    if(pos >= ipservice.size()){
      //防止索引越界
      pos = 0;
    }
    string ip = ipservice.get(pos);
    pos ++;
    return ip;

  }

  public static void main(string[] args) {
    for (int i = 0; i < 4; i++) {
      system.out.println(getip());

    }
  }
}

The result of simulated execution 4 times is

How Nginx implements polling algorithm

If I have a server performance comparison at this time OK (such as 192.168.1.1), I want this server to handle more requests. At this time, the weight probability is involved. This algorithm cannot be implemented. Please see the polling upgrade algorithm I describe later.

Weighted polling algorithm

At this time, I need to set the weights of the three servers in front of me. For example, the first one is set to 5, the second one is set to 1, and the first one is set to 1. Three settings 1

##Third server192.168.1.31
First server 192.168.1.1 5
Second server 192.168.1.2 1
At this time, the first 5 requests will access the first server, the sixth request will access the second server, and the seventh request will access to the third server.

The following is the code example I gave:

public class weightpolling {

  /**
   * key是ip,value是权重
   */
  public static map<string, integer> ipservice = new linkedhashmap<>();
  static {
    ipservice.put("192.168.1.1", 5);
    ipservice.put("192.168.1.2", 1);
    ipservice.put("192.168.1.3", 1);
  }
  public static int requestid = 0;
  public static int getandincrement() {
    return requestid++;
  }

  public static string getip(){
    //获取总的权重
    int totalweight =0;
    for (integer value : ipservice.values()) {
      totalweight+= value;
    }
    //获取当前轮询的值
    int andincrement = getandincrement();
    int pos = andincrement% totalweight;
    for (string ip : ipservice.keyset()) {
      if(pos < ipservice.get(ip)){
        return ip;
      }
      pos -= ipservice.get(ip);
    }
    return null;
  }

  public static void main(string[] args) {
    for (int i = 0; i < 7; i++) {
      system.out.println(getip());
    }
  }

}

The running result at this time is


How Nginx implements polling algorithm

The first one you can see The first server has been executed 5 times, the next 2 servers have been executed once, and so on. Maybe you think this algorithm is not bad. In fact, one disadvantage of this algorithm is that if the weight of the first server is too large, I may need to execute many requests to the first server. In this case, the distribution is uneven and will cause pressure on a certain server. Excessive size leads to collapse. So I will introduce a third algorithm to solve this problem later

Smooth Weighted Polling Algorithm

This algorithm may be more complicated, and it was a bit confusing when I first looked at it. I don’t quite understand. I’ve read relevant information later and combined it with my own understanding to explain it with pictures and text. The server configuration and weights I gave as an example here are still the same as above

Request Current weight = own weight current weight after selection Total weightCurrent maximum weightReturned ipCurrent after selection Weight = current maximum weight - total weight ##1##2{3,2 ,2}73192.168.1.1{-4,2,2}3{1,3,3}73192.168.1.2{1,-4 ,3}4{6,-3,4}76 192.168.1.1{-1,-3,4}5{4,-2,5}75192.168.1.3{4,-2,-2}6{9,-1,-1}79192.168.1.1{2,-1,-1}7{7,0,0}77192.168.1.1{0,0,0}As can be seen from the above figure, although the weight of the first server is set to 5, it is not the fifth request. In the past, it was always executed on the first server, but it was executed in a distributed manner. The scheduling sequence was very even, and after the seventh scheduling was selected, the current weight returned to {0, 0, 0}, and the state of the instance was consistent with the initial state. Therefore, the scheduling operation can be repeated in the future.
{5,1,1} 7 5 192.168.1.1 {-2,1,1}
Some people may not clearly understand the meaning of the previous picture. Let me briefly describe it here:

1. First of all, the total weight will not change. The default is the currently set weight. The sum of

2. When the first request comes in, I initialize the current weight selected value by default to {0,0,0}, so the current weight value is {5 0,1 0,1 0} ,5,1,1 here are the weights set by each server in front of us.

3. Here we can conclude that the maximum weight of the first request is 5. Then return to the first server ip

4. Then we set the current weight after selection. Here is the current maximum weight minus the total weight (5-7). The weight of the unselected weight remains unchanged. At this time, the current weight is obtained. Select the weight value {5-7,1,1}

5. When the second request comes, we continue the above steps 2, 3, and 4.

If there is still If you don’t understand, I will provide the algorithm I implemented using java code below:

public class polling {

  /**
   * key是ip,value是权重
   */
  public static map <string,integer> ipservice = new linkedhashmap <>();
  static {
    ipservice.put("192.168.1.1",5);
    ipservice.put("192.168.1.2",1);
    ipservice.put("192.168.1.3",1);
  }
  private static map<string,weight> weightmap = new linkedhashmap <>();

  public static string getip(){
    //计算总的权重
     int totalweight = 0;
    for (integer value : ipservice.values()) {
      totalweight+=value;
    }
    //首先判断weightmap是否为空
    if(weightmap.isempty()){
      ipservice.foreach((ip,weight)->{
        weight weights = new weight(ip, weight,0);
        weightmap.put(ip,weights);
      });
    }
    //给map中得对象设置当前权重
    weightmap.foreach((ip,weight)->{
      weight.setcurrentweight(weight.getweight() + weight.getcurrentweight());
    });

    //判断最大权重是否大于当前权重,如果为空或者小于当前权重,则把当前权重赋值给最大权重
    weight maxweight = null;
    for (weight weight : weightmap.values()) {
      if(maxweight ==null || weight.getcurrentweight() > maxweight.getcurrentweight()){
        maxweight = weight;
      }
    }
    //最后把当前最大权重减去总的权重
    maxweight.setcurrentweight(maxweight.getcurrentweight() - totalweight);
    //返回
    return maxweight.getip();
  }

  public static void main(string[] args) {
    //模拟轮询7次取ip
    for (int i = 0; i < 7; i++) {
      system.out.println(getip());
    }
  }

}

class weight{
  /**
   * ip
   */
  private string ip;
  /**
   * 设置得权重
   */
  private int weight;
  /**
   * 当前权重
   */
  private int currentweight;

  public weight(string ip, int weight,int currentweight) {
    this.ip = ip;
    this.weight = weight;
    this.currentweight = currentweight;
  }

  public string getip() {
    return ip;
  }

  public void setip(string ip) {
    this.ip = ip;
  }

  public int getweight() {
    return weight;
  }

  public void setweight(int weight) {
    this.weight = weight;
  }

  public int getcurrentweight() {
    return currentweight;
  }

  public void setcurrentweight(int currentweight) {
    this.currentweight = currentweight;
  }
}

The execution result of the code here is:


You can see The execution results here are consistent with those described in the table. How Nginx implements polling algorithm

The above is the detailed content of How Nginx implements polling algorithm. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:亿速云. If there is any infringement, please contact admin@php.cn delete
NGINX vs. Apache: Performance, Scalability, and EfficiencyNGINX vs. Apache: Performance, Scalability, and EfficiencyApr 19, 2025 am 12:05 AM

NGINX and Apache are both powerful web servers, each with unique advantages and disadvantages in terms of performance, scalability and efficiency. 1) NGINX performs well when handling static content and reverse proxying, suitable for high concurrency scenarios. 2) Apache performs better when processing dynamic content and is suitable for projects that require rich module support. The selection of a server should be decided based on project requirements and scenarios.

The Ultimate Showdown: NGINX vs. ApacheThe Ultimate Showdown: NGINX vs. ApacheApr 18, 2025 am 12:02 AM

NGINX is suitable for handling high concurrent requests, while Apache is suitable for scenarios where complex configurations and functional extensions are required. 1.NGINX adopts an event-driven, non-blocking architecture, and is suitable for high concurrency environments. 2. Apache adopts process or thread model to provide a rich module ecosystem that is suitable for complex configuration needs.

NGINX in Action: Examples and Real-World ApplicationsNGINX in Action: Examples and Real-World ApplicationsApr 17, 2025 am 12:18 AM

NGINX can be used to improve website performance, security, and scalability. 1) As a reverse proxy and load balancer, NGINX can optimize back-end services and share traffic. 2) Through event-driven and asynchronous architecture, NGINX efficiently handles high concurrent connections. 3) Configuration files allow flexible definition of rules, such as static file service and load balancing. 4) Optimization suggestions include enabling Gzip compression, using cache and tuning the worker process.

NGINX Unit: Supporting Different Programming LanguagesNGINX Unit: Supporting Different Programming LanguagesApr 16, 2025 am 12:15 AM

NGINXUnit supports multiple programming languages ​​and is implemented through modular design. 1. Loading language module: Load the corresponding module according to the configuration file. 2. Application startup: Execute application code when the calling language runs. 3. Request processing: forward the request to the application instance. 4. Response return: Return the processed response to the client.

Choosing Between NGINX and Apache: The Right Fit for Your NeedsChoosing Between NGINX and Apache: The Right Fit for Your NeedsApr 15, 2025 am 12:04 AM

NGINX and Apache have their own advantages and disadvantages and are suitable for different scenarios. 1.NGINX is suitable for high concurrency and low resource consumption scenarios. 2. Apache is suitable for scenarios where complex configurations and rich modules are required. By comparing their core features, performance differences, and best practices, you can help you choose the server software that best suits your needs.

How to start nginxHow to start nginxApr 14, 2025 pm 01:06 PM

Question: How to start Nginx? Answer: Install Nginx Startup Nginx Verification Nginx Is Nginx Started Explore other startup options Automatically start Nginx

How to check whether nginx is startedHow to check whether nginx is startedApr 14, 2025 pm 01:03 PM

How to confirm whether Nginx is started: 1. Use the command line: systemctl status nginx (Linux/Unix), netstat -ano | findstr 80 (Windows); 2. Check whether port 80 is open; 3. Check the Nginx startup message in the system log; 4. Use third-party tools, such as Nagios, Zabbix, and Icinga.

How to close nginxHow to close nginxApr 14, 2025 pm 01:00 PM

To shut down the Nginx service, follow these steps: Determine the installation type: Red Hat/CentOS (systemctl status nginx) or Debian/Ubuntu (service nginx status) Stop the service: Red Hat/CentOS (systemctl stop nginx) or Debian/Ubuntu (service nginx stop) Disable automatic startup (optional): Red Hat/CentOS (systemctl disabled nginx) or Debian/Ubuntu (syst

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.