Golang Building Video: From Getting Started to Practical Combat
With the rapid development of the Internet and information technology, video plays an increasingly important role in our daily lives. Against this background, the demand for video platforms and applications is also increasing. Golang is a rapidly rising language, and its advantages of high efficiency, powerful concurrency capabilities and easy-to-learn syntax are recognized by more and more developers. In this article, we will introduce how to use Golang to build a simple video application, and provide examples and code of the actual application.
1. Environment setup
Before starting any Golang project, you need to install Golang. In this example, we will use Golang version 1.16. You can download the installation package from the official website and follow the installation wizard to install it, or use the default package manager of your Linux distribution to install it.
After the installation is complete, you will also need to install some tools and dependencies to develop our video application. Here are the necessary tools and dependencies:
- FFmpeg: This is a command line application for processing and transcoding videos.
- GStreamer: This is a streaming framework that we will use to process audio.
After installing these tools, you need to use the following commands in the terminal to check:
go version ffmpeg -version gst-launch-1.0 --version
These commands will display the version information of Golang, FFmpeg and GStreamer respectively.
2. Overview
In the remainder of this article, we will use Golang and FFmpeg to build a very basic video application. We will use GStreamer to process audio streams and incorporate them into our application. In this example, we will write a simple web server that can be used to process and convert video files uploaded by users.
We will use Golang's official web framework - Go Gin to build this web server. Next, we'll detail how to build this application.
3. Write the code
First, we will import the required dependencies. This includes Go Gin and FFmpeg, which can be installed with the following command:
go get -u github.com/gin-gonic/gin go get -u github.com/gabriel-vasile/mimetype go get -u github.com/jinzhu/gorm go get -u github.com/jinzhu/gorm/dialects/sqlite
Next, we will import the required packages and create a file called "main.go". The file should contain the following code:
package main import ( "github.com/gin-gonic/gin" ) func main() { router := gin.Default() router.POST("/upload", upload) router.Run(":8080") } func upload(c *gin.Context) { file, header, err := c.Request.FormFile("file") if err != nil { c.String(400, "Bad Request") return } defer file.Close() // Save the file to disk fileName := header.Filename out, err := os.Create("/tmp/" + fileName) if err != nil { c.String(500, "Internal Server Error") return } defer out.Close() _, err = io.Copy(out, file) if err != nil { c.String(500, "Internal Server Error") return } c.String(200, "File uploaded successfully") }
This code creates a Go Gin server that contains a POST endpoint. The POST/upload endpoint will allow users to upload video files.
In the upload handler, we obtain the uploaded file through c.Request.FormFile("file"), and then save it to a temporary directory on the disk. After saving the file, we send a successful upload message to the client.
Next, we need to write code to process the uploaded video and convert it to the appropriate format using FFmpeg. We can install FFmpeg by using the following command:
sudo apt-get install ffmpeg
Next, add the following code to our application:
func upload(c *gin.Context) { file, header, err := c.Request.FormFile("file") if err != nil { c.String(400, "Bad Request") return } defer file.Close() // Save the file to disk fileName := header.Filename out, err := os.Create("/tmp/" + fileName) if err != nil { c.String(500, "Internal Server Error") return } defer out.Close() _, err = io.Copy(out, file) if err != nil { c.String(500, "Internal Server Error") return } // Get file information f, err := os.Open("/tmp/" + fileName) if err != nil { c.String(500, "Internal Server Error") return } fileInfo, err := f.Stat() if err != nil { c.String(500, "Internal Server Error") return } mimeType, err := mimetype.DetectFile("/tmp/" + fileName) if err != nil { c.String(500, "Internal Server Error") return } // Convert the video to MP4 if mimeType.String() != "video/mp4" { cmd := exec.Command("ffmpeg", "-i", "/tmp/"+fileName, "-c:v", "libx264", "-c:a", "aac", "-strict", "experimental", "-preset", "slow", "-crf", "22", "-movflags", "faststart", "/tmp/"+fileName+".mp4") err = cmd.Run() if err != nil { c.String(500, "Internal Server Error") return } // Remove the original file err = os.Remove("/tmp/" + fileName) if err != nil { c.String(500, "Internal Server Error") return } fileName = fileName + ".mp4" } // Serve the video c.FileAttachment("/tmp/"+fileName, fileName) }
In this version of the upload handler, we use FFmpeg to Uploaded videos are converted to MP4 format. We use the mimetype package to detect the MIME type of the uploaded file, and if it's not "video/mp4" we run the FFmpeg conversion command.
4. Test the application
Now that our application is finished writing, we can run the server on localhost using the following command:
go run main.go
Once the server is running, You can test it using curl or your favorite HTTP client. Here is an example command to test an uploaded video with curl:
curl -F "file=@/path/to/video/file" http://localhost:8080/upload ```` 这将向localhost:8080的“upload”端点POST一个视频文件。如果一切正常,您应该会收到一条来自服务器的附加文件的相应消息,该消息将向您提供已处理的视频的URL。 五、总结
The above is the detailed content of golang build video. For more information, please follow other related articles on the PHP Chinese website!

Golang excels in practical applications and is known for its simplicity, efficiency and concurrency. 1) Concurrent programming is implemented through Goroutines and Channels, 2) Flexible code is written using interfaces and polymorphisms, 3) Simplify network programming with net/http packages, 4) Build efficient concurrent crawlers, 5) Debugging and optimizing through tools and best practices.

The core features of Go include garbage collection, static linking and concurrency support. 1. The concurrency model of Go language realizes efficient concurrent programming through goroutine and channel. 2. Interfaces and polymorphisms are implemented through interface methods, so that different types can be processed in a unified manner. 3. The basic usage demonstrates the efficiency of function definition and call. 4. In advanced usage, slices provide powerful functions of dynamic resizing. 5. Common errors such as race conditions can be detected and resolved through getest-race. 6. Performance optimization Reuse objects through sync.Pool to reduce garbage collection pressure.

Go language performs well in building efficient and scalable systems. Its advantages include: 1. High performance: compiled into machine code, fast running speed; 2. Concurrent programming: simplify multitasking through goroutines and channels; 3. Simplicity: concise syntax, reducing learning and maintenance costs; 4. Cross-platform: supports cross-platform compilation, easy deployment.

Confused about the sorting of SQL query results. In the process of learning SQL, you often encounter some confusing problems. Recently, the author is reading "MICK-SQL Basics"...

The relationship between technology stack convergence and technology selection In software development, the selection and management of technology stacks are a very critical issue. Recently, some readers have proposed...

Golang ...

How to compare and handle three structures in Go language. In Go programming, it is sometimes necessary to compare the differences between two structures and apply these differences to the...

How to view globally installed packages in Go? In the process of developing with Go language, go often uses...


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Notepad++7.3.1
Easy-to-use and free code editor

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.