search
HomeBackend DevelopmentGolanggolang lru implementation
golang lru implementationMay 19, 2023 am 10:16 AM

LRU (Least Recently Used) algorithm is a common cache replacement strategy. When the cache reaches the preset limit, the cache will automatically eliminate the least recently used data to free up space.

In Golang, we can use doubly linked lists and hash tables to implement LRU cache. In this article, we describe how to implement an LRU cache using these two data structures.

The function of the doubly linked list is to maintain the cached data order. Every time new data is inserted or data is accessed, the data will be advanced. At the same time, when the cache reaches the upper limit, we can delete the least recently used data from the end of the linked list.

The function of the hash table is to speed up data search. Every time data is accessed, through the data index stored in the hash table, we can quickly find the corresponding cached data. Therefore, we will operate on hash tables during implementation.

Next, we will explain how to implement LRU cache based on doubly linked lists and hash tables. We define a LRUCache structure and declare the head and tail pointers of the linked list, as well as the hash table map and cache capacity.

type LRUCache struct {
    head, tail *entry  // 链表头和链表尾指针
    cache      map[int]*entry  // 哈希表存储缓存中的数据
    capacity   int     // 缓存容量
}

Next, we will define the structure of the doubly linked list node.

type entry struct {
    key, value int        // 存储节点的键值对
    prev, next *entry    // 前驱和后继指针
}

Here, we use prev and next to represent the predecessor and successor pointers of the node respectively, and key and value represent the key-value pair of the node respectively.

Next, we will define the constructor NewLRUCache of LRUCache and pass in the cache capacity capacity.

func NewLRUCache(capacity int) *LRUCache {
    return &LRUCache{
        cache:    make(map[int]*entry),
        capacity: capacity,
    }
}

In the constructor, we will initialize the hash table and cache capacity.

Next, we will define the Get and Put methods of LRUCache to access and store data.

Implementation of Get method:

func (c *LRUCache) Get(key int) int {
    if elem, ok := c.cache[key]; ok {
        // 更新节点位置
        c.moveToHead(elem)
        return elem.value
    }
    return -1
}

First, we find whether the corresponding data exists from the hash table. If it exists, move the node to the head of the linked list and return the node storage value. Otherwise, -1 is returned.

The following is the implementation of the moveToHead method:

func (c *LRUCache) moveToHead(elem *entry) {
    if elem == c.head {
        return
    } else if elem == c.tail {
        c.tail = elem.prev
    } else {
        elem.prev.next = elem.next
        elem.next.prev = elem.prev
    }

    elem.prev = nil
    elem.next = c.head
    c.head.prev = elem
    c.head = elem
}

This method receives a node pointer elem, which is used to move the node to the head of the linked list. First, if the node is already at the head of the linked list, return; otherwise, if the node is at the tail of the linked list, update the tail pointer of the linked list; otherwise, delete the node from the linked list and put the node at the head of the linked list.

Implementation of the Put method:

func (c *LRUCache) Put(key, value int) {
    if elem, ok := c.cache[key]; ok {
        elem.value = value
        c.moveToHead(elem)
    } else {
        // 创建新节点
        elem := &entry{key: key, value: value}
        c.cache[key] = elem
        if c.head == nil {
            c.head = elem
            c.tail = elem
        } else {
            // 在链表头部插入新节点
            elem.next = c.head
            c.head.prev = elem
            c.head = elem
        }
        // 判断缓存是否达到预设上限
        if len(c.cache) > c.capacity {
            // 删除链表尾部节点和哈希表中的数据
            delete(c.cache, c.tail.key)
            c.tail = c.tail.prev
            c.tail.next = nil
        }
    }
}

First, we find whether the corresponding data exists from the hash table. If it exists, update the value stored in the node and call the moveToHead method to move the node Move to the head of the linked list. Otherwise, create a new node and insert it at the head of the linked list. If the cache reaches the preset upper limit, the tail node of the linked list and the data in the hash table are deleted.

Finally, we put the complete code together:

type LRUCache struct {
    head, tail *entry
    cache      map[int]*entry
    capacity   int
}

type entry struct {
    key, value int
    prev, next *entry
}

func NewLRUCache(capacity int) *LRUCache {
    return &LRUCache{
        cache:    make(map[int]*entry),
        capacity: capacity,
    }
}

func (c *LRUCache) Get(key int) int {
    if elem, ok := c.cache[key]; ok {
        // 更新节点位置
        c.moveToHead(elem)
        return elem.value
    }
    return -1
}

func (c *LRUCache) moveToHead(elem *entry) {
    if elem == c.head {
        return
    } else if elem == c.tail {
        c.tail = elem.prev
    } else {
        elem.prev.next = elem.next
        elem.next.prev = elem.prev
    }

    elem.prev = nil
    elem.next = c.head
    c.head.prev = elem
    c.head = elem
}

func (c *LRUCache) Put(key, value int) {
    if elem, ok := c.cache[key]; ok {
        elem.value = value
        c.moveToHead(elem)
    } else {
        // 创建新节点
        elem := &entry{key: key, value: value}
        c.cache[key] = elem
        if c.head == nil {
            c.head = elem
            c.tail = elem
        } else {
            // 在链表头部插入新节点
            elem.next = c.head
            c.head.prev = elem
            c.head = elem
        }
        // 判断缓存是否达到预设上限
        if len(c.cache) > c.capacity {
            // 删除链表尾部节点和哈希表中的数据
            delete(c.cache, c.tail.key)
            c.tail = c.tail.prev
            c.tail.next = nil
        }
    }
}

In this article, we have introduced how to use doubly linked lists and hash tables to implement the LRU cache algorithm. Through the implementation of this algorithm, we can effectively manage cache and optimize data access efficiency.

The above is the detailed content of golang lru implementation. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How do I write mock objects and stubs for testing in Go?How do I write mock objects and stubs for testing in Go?Mar 10, 2025 pm 05:38 PM

This article demonstrates creating mocks and stubs in Go for unit testing. It emphasizes using interfaces, provides examples of mock implementations, and discusses best practices like keeping mocks focused and using assertion libraries. The articl

How do you write unit tests in Go?How do you write unit tests in Go?Mar 21, 2025 pm 06:34 PM

The article discusses writing unit tests in Go, covering best practices, mocking techniques, and tools for efficient test management.

How can I define custom type constraints for generics in Go?How can I define custom type constraints for generics in Go?Mar 10, 2025 pm 03:20 PM

This article explores Go's custom type constraints for generics. It details how interfaces define minimum type requirements for generic functions, improving type safety and code reusability. The article also discusses limitations and best practices

How can I use tracing tools to understand the execution flow of my Go applications?How can I use tracing tools to understand the execution flow of my Go applications?Mar 10, 2025 pm 05:36 PM

This article explores using tracing tools to analyze Go application execution flow. It discusses manual and automatic instrumentation techniques, comparing tools like Jaeger, Zipkin, and OpenTelemetry, and highlighting effective data visualization

How do you use the pprof tool to analyze Go performance?How do you use the pprof tool to analyze Go performance?Mar 21, 2025 pm 06:37 PM

The article explains how to use the pprof tool for analyzing Go performance, including enabling profiling, collecting data, and identifying common bottlenecks like CPU and memory issues.Character count: 159

Explain the purpose of Go's reflect package. When would you use reflection? What are the performance implications?Explain the purpose of Go's reflect package. When would you use reflection? What are the performance implications?Mar 25, 2025 am 11:17 AM

The article discusses Go's reflect package, used for runtime manipulation of code, beneficial for serialization, generic programming, and more. It warns of performance costs like slower execution and higher memory use, advising judicious use and best

How do you use table-driven tests in Go?How do you use table-driven tests in Go?Mar 21, 2025 pm 06:35 PM

The article discusses using table-driven tests in Go, a method that uses a table of test cases to test functions with multiple inputs and outcomes. It highlights benefits like improved readability, reduced duplication, scalability, consistency, and a

How do you use sync.WaitGroup to wait for multiple goroutines to complete?How do you use sync.WaitGroup to wait for multiple goroutines to complete?Mar 19, 2025 pm 02:51 PM

The article explains how to use sync.WaitGroup in Go to manage concurrent operations, detailing initialization, usage, common pitfalls, and best practices.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor