Redis is an open source in-memory database that is widely used in scenarios such as caching, message queues, and distributed locks. Among them, Bloom filter is an efficient data structure that can be used to determine whether an element exists in a set, and has been widely used in Redis. This article will introduce the implementation principle and usage of Bloom filters in Redis as well as the support for Bloom filters in PHP.
1. Implementation principle of Bloom filter
Bloom filter is a very simple and efficient data structure, which is implemented by using multiple hash functions and a binary vector Judgment of sets. When an element is added to a set, it passes the element into multiple hash functions, each of which generates a unique hash value (usually a number), which is then converted into a binary The corresponding position in the vector is set to 1. When it is necessary to determine whether an element exists in the set, it will pass the element into these hash functions, generate multiple hash values, and query whether the binary vector positions corresponding to these hash values are all 1, and if they are all 1, it is considered that this element may be in the set, otherwise it can be determined that this element is definitely not in the set. It should be noted that due to the characteristics of the hash function, the Bloom filter will have a certain false positive rate, but this false positive rate can be adjusted by setting the number of hash functions and the size of the binary vector.
2. How to use Bloom filters in Redis
The commands to implement Bloom filters in Redis are BF.ADD, BF.EXISTS, BF.MADD and BF.MEXISTS, respectively. Used to add elements to the Bloom filter, determine whether a single element exists in the Bloom filter, add multiple elements to the Bloom filter, and determine whether multiple elements exist in the Bloom filter. When using it, you need to create a Bloom filter first, which can be created through the BF.RESERVE command. You need to specify the name of the Bloom filter, the number of hash functions, the size of the binary vector, and the false positive rate. For example, to create a Bloom filter named test, the number of hash functions is 10, the binary vector size is 10000, and the false positive rate is 1%, you can use the following command:
BF.RESERVE test 10 10000 0.01
Then you can Add elements to this Bloom filter or determine whether the element exists in the collection. The specific usage is as follows:
1. Add the element to the Bloom filter
BF.ADD test element1
This command will add the element element1 to the Bloom filter named test.
2. Determine whether a single element exists in the Bloom filter
BF.EXISTS test element1
This command will determine whether the element element1 exists in the Bloom filter named test. If it returns 1 It means it may exist. If it returns 0, it means it definitely does not exist.
3. Add multiple elements to the Bloom filter
BF.MADD test element1 element2 element3
This command will add elements element1, element2 and element3 to the Bloom filter named test.
4. Determine whether multiple elements exist in the Bloom filter
BF.MEXISTS test element1 element2 element3
This command will determine whether the elements element1, element2 and element3 exist in the Bloom filter named test , if one of the returned results is 0, it means that at least one of the elements must not exist in the Bloom filter.
3. Support for Bloom filters in PHP
The support for Bloom filters in PHP is implemented through the redis extension. You need to ensure that the redis extension has been installed before use. . For specific usage, please refer to the following code examples:
$redis = new Redis(); $redis->connect('127.0.0.1', 6379); // 创建布隆过滤器,哈希函数个数为10,二进制向量大小为10000,误判率为1% $redis->rawCommand('BF.RESERVE', 'test', 10, 10000, 0.01); // 将元素element1加入到布隆过滤器中 $redis->rawCommand('BF.ADD', 'test', 'element1'); // 判断元素element1是否存在于布隆过滤器中 $result = $redis->rawCommand('BF.EXISTS', 'test', 'element1'); if ($result) { echo 'element1可能存在于布隆过滤器中'; } else { echo 'element1一定不存在于布隆过滤器中'; } // 将元素element2和element3加入到布隆过滤器中 $redis->rawCommand('BF.MADD', 'test', 'element2', 'element3'); // 判断元素element1、element2和element3是否存在于布隆过滤器中 $result = $redis->rawCommand('BF.MEXISTS', 'test', 'element1', 'element2', 'element3'); if (in_array(0, $result)) { echo '其中至少一个元素一定不存在于布隆过滤器中'; } else { echo '所有元素可能存在于布隆过滤器中'; }
Through the above PHP code examples, you can use the Bloom filter in Redis.
Summary:
In actual application scenarios, because Bloom filters have the characteristics of fast search and efficient storage, they are widely used in fields such as preventing cache penetration and anti-spam. . In Redis, Bloom filter related operations can be easily implemented through the support of BF.ADD, BF.EXISTS, BF.MADD and BF.MEXISTS commands. Of course, we can also easily implement the use of bloom filters by installing the redis extension in PHP.
The above is the detailed content of Bloom filter in Redis and how to use PHP. For more information, please follow other related articles on the PHP Chinese website!

php把负数转为正整数的方法:1、使用abs()函数将负数转为正数,使用intval()函数对正数取整,转为正整数,语法“intval(abs($number))”;2、利用“~”位运算符将负数取反加一,语法“~$number + 1”。

实现方法:1、使用“sleep(延迟秒数)”语句,可延迟执行函数若干秒;2、使用“time_nanosleep(延迟秒数,延迟纳秒数)”语句,可延迟执行函数若干秒和纳秒;3、使用“time_sleep_until(time()+7)”语句。

php除以100保留两位小数的方法:1、利用“/”运算符进行除法运算,语法“数值 / 100”;2、使用“number_format(除法结果, 2)”或“sprintf("%.2f",除法结果)”语句进行四舍五入的处理值,并保留两位小数。

判断方法:1、使用“strtotime("年-月-日")”语句将给定的年月日转换为时间戳格式;2、用“date("z",时间戳)+1”语句计算指定时间戳是一年的第几天。date()返回的天数是从0开始计算的,因此真实天数需要在此基础上加1。

php判断有没有小数点的方法:1、使用“strpos(数字字符串,'.')”语法,如果返回小数点在字符串中第一次出现的位置,则有小数点;2、使用“strrpos(数字字符串,'.')”语句,如果返回小数点在字符串中最后一次出现的位置,则有。

方法:1、用“str_replace(" ","其他字符",$str)”语句,可将nbsp符替换为其他字符;2、用“preg_replace("/(\s|\ \;||\xc2\xa0)/","其他字符",$str)”语句。

php字符串有下标。在PHP中,下标不仅可以应用于数组和对象,还可应用于字符串,利用字符串的下标和中括号“[]”可以访问指定索引位置的字符,并对该字符进行读写,语法“字符串名[下标值]”;字符串的下标值(索引值)只能是整数类型,起始值为0。

在PHP中,可以利用implode()函数的第一个参数来设置没有分隔符,该函数的第一个参数用于规定数组元素之间放置的内容,默认是空字符串,也可将第一个参数设置为空,语法为“implode(数组)”或者“implode("",数组)”。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

Atom editor mac version download
The most popular open source editor

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

Dreamweaver CS6
Visual web development tools
