What is concurrent programming
Concurrent programming refers to a program design that can perform multiple operations within a period of time. It is usually represented by multiple tasks in the program that are started at the same time and can run and interact with each other. There will be no impact. The benefit of concurrent programming is that it can improve the performance and responsiveness of the program.
Application of concurrent programming in crawlers
Crawler programs are typical I/O-intensive tasks. For I/O-intensive tasks, multi-threading and asynchronous I/O are A good choice, because when a certain part of the program is blocked due to I/O operations, other parts of the program can still run, so we don't have to waste a lot of time waiting and blocking.
Single-threaded version
Let’s first look at the single-threaded version of the crawler program. This crawler program uses the requests
library to obtain JSON data and saves the image locally through the open
function.
""" example04.py - 单线程版本爬虫 """ import os import requests def download_picture(url): filename = url[url.rfind('/') + 1:] resp = requests.get(url) if resp.status_code == 200: with open(f'images/beauty/{filename}', 'wb') as file: file.write(resp.content) def main(): if not os.path.exists('images/beauty'): os.makedirs('images/beauty') for page in range(3): resp = requests.get(f'<https://image.so.com/zjl?ch=beauty&sn=>{page * 30}') if resp.status_code == 200: pic_dict_list = resp.json()['list'] for pic_dict in pic_dict_list: download_picture(pic_dict['qhimg_url']) if __name__ == '__main__': main()
On macOS or Linux systems, we can use the time
command to understand the execution time of the above code and the CPU utilization, as shown below.
time python3 example04.py
The following is the result of the single-threaded crawler code executed on my computer.
python3 example04.py 2.36s user 0.39s system 12% cpu 21.578 total
Here we only need to pay attention to the total time consumption of the code which is 21.578
seconds, CPU utilization is 12%
.
Multi-threaded version
We use the thread pool technology mentioned before to modify the above code into a multi-threaded version.
""" example05.py - 多线程版本爬虫 """ import os from concurrent.futures import ThreadPoolExecutor import requests def download_picture(url): filename = url[url.rfind('/') + 1:] resp = requests.get(url) if resp.status_code == 200: with open(f'images/beauty/{filename}', 'wb') as file: file.write(resp.content) def main(): if not os.path.exists('images/beauty'): os.makedirs('images/beauty') with ThreadPoolExecutor(max_workers=16) as pool: for page in range(3): resp = requests.get(f'<https://image.so.com/zjl?ch=beauty&sn=>{page * 30}') if resp.status_code == 200: pic_dict_list = resp.json()['list'] for pic_dict in pic_dict_list: pool.submit(download_picture, pic_dict['qhimg_url']) if __name__ == '__main__': main()
Execute the command shown below.
time python3 example05.py
The execution result of the code is as follows:
python3 example05.py 2.65s user 0.40s system 95% cpu 3.193 total
Asynchronous I/O version
We use aiohttp
to modify the above code to the asynchronous I/O version. In order to achieve network resource acquisition and file writing operations in asynchronous I/O, we must first install the third-party libraries aiohttp
and aiofile
.
pip install aiohttp aiofile
The following is the asynchronous I/O version of the crawler code.
""" example06.py - 异步I/O版本爬虫 """ import asyncio import json import os import aiofile import aiohttp async def download_picture(session, url): filename = url[url.rfind('/') + 1:] async with session.get(url, ssl=False) as resp: if resp.status == 200: data = await resp.read() async with aiofile.async_open(f'images/beauty/{filename}', 'wb') as file: await file.write(data) async def main(): if not os.path.exists('images/beauty'): os.makedirs('images/beauty') async with aiohttp.ClientSession() as session: tasks = [] for page in range(3): resp = await session.get(f'<https://image.so.com/zjl?ch=beauty&sn=>{page * 30}') if resp.status == 200: pic_dict_list = (await resp.json())['list'] for pic_dict in pic_dict_list: tasks.append(asyncio.ensure_future(download_picture(session, pic_dict['qhimg_url']))) await asyncio.gather(*tasks) if __name__ == '__main__': loop = asyncio.get_event_loop() loop.run_until_complete(main())
Execute the command shown below.
time python3 example06.py
The execution result of the code is as follows:
python3 example06.py 0.92s user 0.27s system 290% cpu 0.420 total
Compared with the single-threaded version of the crawler program, the execution time of the multi-threaded version and the asynchronous I/O version of the crawler program has been significantly improved, and the asynchronous I/O version The /O version of the crawler performs best.
The above is the detailed content of How to apply concurrent programming in Python crawlers. For more information, please follow other related articles on the PHP Chinese website!

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python and C have significant differences in memory management and control. 1. Python uses automatic memory management, based on reference counting and garbage collection, simplifying the work of programmers. 2.C requires manual management of memory, providing more control but increasing complexity and error risk. Which language to choose should be based on project requirements and team technology stack.

Python's applications in scientific computing include data analysis, machine learning, numerical simulation and visualization. 1.Numpy provides efficient multi-dimensional arrays and mathematical functions. 2. SciPy extends Numpy functionality and provides optimization and linear algebra tools. 3. Pandas is used for data processing and analysis. 4.Matplotlib is used to generate various graphs and visual results.

Whether to choose Python or C depends on project requirements: 1) Python is suitable for rapid development, data science, and scripting because of its concise syntax and rich libraries; 2) C is suitable for scenarios that require high performance and underlying control, such as system programming and game development, because of its compilation and manual memory management.

Python is widely used in data science and machine learning, mainly relying on its simplicity and a powerful library ecosystem. 1) Pandas is used for data processing and analysis, 2) Numpy provides efficient numerical calculations, and 3) Scikit-learn is used for machine learning model construction and optimization, these libraries make Python an ideal tool for data science and machine learning.

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

SublimeText3 Linux new version
SublimeText3 Linux latest version

SublimeText3 Mac version
God-level code editing software (SublimeText3)

SublimeText3 English version
Recommended: Win version, supports code prompts!

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.