1. The finishing touch
The adjacency list is a chain storage method for graphs. Its data structure consists of two parts: nodes and adjacency points.
Adjacency lists can be used to represent undirected graphs, directed graphs and networks. This is explained using an undirected graph.
1. Undirected graph
2. Linked table of undirected graph
3 .Explanation
The adjacent points of node a are nodes b and d, and the storage subscripts of their adjacent points are 1 and 3. Put them into the singly linked list behind node a according to the head interpolation method (reverse order).
The adjacent points of node b are nodes a, c, and d. The storage subscripts of their adjacent points are 0, 2, and 3. Put them into the singly linked list behind node b according to the head interpolation method (reverse order). middle.
The adjacent points of node c are nodes b and d, and the storage subscripts of their adjacent points are 1 and 3. They are put into the singly linked list behind node c according to the head insertion method (reverse order).
The adjacent points of node d are nodes a, b, and c. The storage subscripts of their adjacent points are 0, 1, and 2. They are put into the singly linked list behind node d according to the head interpolation method (reverse order). middle.
4. Undirected graph
The characteristics of the adjacency list are as follows. If there are n nodes and e edges in the undirected graph, then there are n nodes in the node table and 2e in the neighbor node table. nodes.
The degree of a node is the number of nodes in the singly linked list behind the node.
2. Data structure of adjacency list
1. Node
includes node information data and a pointer to the first adjacent point first.
2. Adjacency point
Includes the storage subscript v of the adjacent point and the pointer to the next adjacent point next, if it is an adjacent point of the network , then a weight domain w needs to be added, as shown in the figure below.
3. Algorithm steps
1 Enter the number of nodes and edges.
2 Enter the node information in turn, store it in the data field of the node array Vex[], and leave the Vex[] first field blank.
3 Enter the two nodes attached to each edge in turn. If it is a network, you also need to enter the weight of the edge.
If it is an undirected graph, enter a b, query nodes a, b, store the subscripts i, j in the node array Vex[], create a new adjacent point s, let s.v = j;s .next=null;Then insert node s before the first adjacent point of the i-th node (head interpolation method). In an undirected graph, there is an edge from node a to node b, and there is an edge from node b to node a, so a new adjacency point s2 needs to be created, let s2.v = i;s2.next=null; and then let The s2 node is inserted before the first adjacent point of the j-th node (head interpolation method).
If it is an undirected graph, enter a b, query nodes a, b, store the subscripts i, j in the node array Vex[], create a new adjacent point s, let s.v = j;s .next=null;Then insert node s before the first adjacent point of the i-th node (head interpolation method).
If it is an undirected network or a directed network, it is processed in the same way as an undirected graph or a directed graph, except that the neighboring nodes have an additional weight domain.
4. Implementation
package graph; import java.util.Scanner; public class CreateALGraph { static final int MaxVnum = 100; // 顶点数最大值 public static void main(String[] args) { ALGraph G = new ALGraph(); for (int i = 0; i < G.Vex.length; i++) { G.Vex[i] = new VexNode(); } CreateALGraph(G); // 创建有向图邻接表 printg(G); // 输出邻接表 } static int locatevex(ALGraph G, char x) { for (int i = 0; i < G.vexnum; i++) // 查找顶点信息的下标 if (x == G.Vex[i].data) return i; return -1; // 没找到 } // 插入一条边 static void insertedge(ALGraph G, int i, int j) { AdjNode s = new AdjNode(); s.v = j; s.next = G.Vex[i].first; G.Vex[i].first = s; } // 输出邻接表 static void printg(ALGraph G) { System.out.println("----------邻接表如下:----------"); for (int i = 0; i < G.vexnum; i++) { AdjNode t = G.Vex[i].first; System.out.print(G.Vex[i].data + ": "); while (t != null) { System.out.print("[" + t.v + "]\t"); t = t.next; } System.out.println(); } } // 创建有向图邻接表 static void CreateALGraph(ALGraph G) { int i, j; char u, v; System.out.println("请输入顶点数和边数:"); Scanner scanner = new Scanner(System.in); G.vexnum = scanner.nextInt(); G.edgenum = scanner.nextInt(); System.out.println("请输入顶点信息:"); for (i = 0; i < G.vexnum; i++)//输入顶点信息,存入顶点信息数组 G.Vex[i].data = scanner.next().charAt(0); for (i = 0; i < G.vexnum; i++) G.Vex[i].first = null; System.out.println("请依次输入每条边的两个顶点u,v"); while (G.edgenum-- > 0) { u = scanner.next().charAt(0); v = scanner.next().charAt(0); i = locatevex(G, u); // 查找顶点 u 的存储下标 j = locatevex(G, v); // 查找顶点 v 的存储下标 if (i != -1 && j != -1) insertedge(G, i, j); else { System.out.println("输入顶点信息错!请重新输入!"); G.edgenum++; // 本次输入不算 } } } } // 定义邻接点类型 class AdjNode { int v; // 邻接点下标 AdjNode next; // 指向下一个邻接点 } // 定义顶点类型 class VexNode { char data; // VexType为顶点的数据类型,根据需要定义 AdjNode first; // 指向第一个邻接点 } // 定义邻接表类型 class ALGraph { VexNode Vex[] = new VexNode[CreateALGraph.MaxVnum]; int vexnum; // 顶点数 int edgenum; // 边数 }
5. Test
White is output, green is input
The above is the detailed content of How to use adjacency list to store graph in Java. For more information, please follow other related articles on the PHP Chinese website!

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于结构化数据处理开源库SPL的相关问题,下面就一起来看一下java下理想的结构化数据处理类库,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于PriorityQueue优先级队列的相关知识,Java集合框架中提供了PriorityQueue和PriorityBlockingQueue两种类型的优先级队列,PriorityQueue是线程不安全的,PriorityBlockingQueue是线程安全的,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于java锁的相关问题,包括了独占锁、悲观锁、乐观锁、共享锁等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于多线程的相关问题,包括了线程安装、线程加锁与线程不安全的原因、线程安全的标准类等等内容,希望对大家有帮助。

本篇文章给大家带来了关于Java的相关知识,其中主要介绍了关于关键字中this和super的相关问题,以及他们的一些区别,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于枚举的相关问题,包括了枚举的基本操作、集合类对枚举的支持等等内容,下面一起来看一下,希望对大家有帮助。

封装是一种信息隐藏技术,是指一种将抽象性函式接口的实现细节部分包装、隐藏起来的方法;封装可以被认为是一个保护屏障,防止指定类的代码和数据被外部类定义的代码随机访问。封装可以通过关键字private,protected和public实现。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于设计模式的相关问题,主要将装饰器模式的相关内容,指在不改变现有对象结构的情况下,动态地给该对象增加一些职责的模式,希望对大家有帮助。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 English version
Recommended: Win version, supports code prompts!

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

SublimeText3 Chinese version
Chinese version, very easy to use
