


Introduction to trees
Trees are different from linked lists or hash tables. They are a non-linear data structure. Trees are divided into binary trees, binary search trees, B-trees, B-trees, red-black trees, etc. .
Tree is a data structure, which is a collection of hierarchical relationships composed of n limited nodes. If you use a picture to represent it, you can see that it looks like an upside-down tree. Therefore, we collectively call this type of data structure a tree, with the roots at the top and the leaves at the bottom. A general tree has the following characteristics:
Each node has 0 or more child nodes
The node without a parent node is called the root Node
Each non-root node has and has only one parent node
Each child node can be divided into multiple disjoint children Tree
The definition of a binary tree is: each node has at most two child nodes. That is, each node can only have the following four situations:
Both the left subtree and the right subtree are empty
Only the left subtree exists Tree
Only the right subtree exists
Both the left subtree and the right subtree exist
binary search tree
Binary search tree is also called binary sorting tree. It is either an empty tree or a binary tree with the following properties:
- ## If its left subtree is not empty, then the values of all nodes on the left subtree are less than the value of the root node. If its right subtree is not empty, then the values of all nodes on the right subtree are greater than the value of the root node.
- Its left and right subtrees are also binary search trees respectively
class Node: def __init__(self, data): self.data = data self.left = None self.right = None class BST: def __init__(self): self.root = None def insert(self, value): if self.root is None: self.root = Node(value) else: self._insert(value, self.root) def _insert(self, value, node): if value < node.data: if node.left is None: node.left = Node(value) else: self._insert(value, node.left) elif value > node.data: if node.right is None: node.right = Node(value) else: self._insert(value, node.right) def search(self, value): if self.root is None: return False else: return self._search(value, self.root) def _search(self, value, node): if node is None: return False elif node.data == value: return True elif value < node.data: return self._search(value, node.left) else: return self._search(value, node.right) def delete(self, value): if self.root is None: return False else: self.root = self._delete(value, self.root) def _delete(self, value, node): if node is None: return node elif value < node.data: node.left = self._delete(value, node.left) elif value > node.data: node.right = self._delete(value, node.right) else: if node.left is None and node.right is None: del node return None elif node.left is None: temp = node.right del node return temp elif node.right is None: temp = node.left del node return temp else: temp = self._find_min(node.right) node.data = temp.data node.right = self._delete(temp.data, node.right) return node def _find_min(self, node): while node.left is not None: node = node.left return node2. Use list implementationUse a list to store the elements of the binary search tree, and then implement insertion, search, and deletion through the positional relationship of the elements in the list Wait for operations. The code example is as follows:
class BST: def __init__(self): self.values = [] def insert(self, value): if len(self.values) == 0: self.values.append(value) else: self._insert(value, 0) def _insert(self, value, index): if value < self.values[index]: left_child_index = 2 * index + 1 if left_child_index >= len(self.values): self.values.extend([None] * (left_child_index - len(self.values) + 1)) if self.values[left_child_index] is None: self.values[left_child_index] = value else: self._insert(value, left_child_index) else: right_child_index = 2 * index + 2 if right_child_index >= len(self.values): self.values.extend([None] * (right_child_index - len(self.values) + 1)) if self.values[right_child_index] is None: self.values[right_child_index] = value else: self._insert(value, right_child_index) def search(self, value): if value in self.values: return True else: return False def delete(self, value): if value not in self.values: return False else: index = self.values.index(value) self._delete(index) return True def _delete(self, index): left_child_index = 2 * index + 1 right_child_index = 2 * index + 2 if left_child_index < len(self.values) and self.values[left_child_index] is not None: self._delete(left_child_index) if right_child_index < len(self.values) and self.values[right_child_index] is not None: self3. Use a dictionary to implementThe key of the dictionary represents the node value, and the value of the dictionary is a dictionary containing the left and right child nodes. The code example is as follows:
def insert(tree, value): if not tree: return {value: {}} elif value < list(tree.keys())[0]: tree[list(tree.keys())[0]] = insert(tree[list(tree.keys())[0]], value) else: tree[list(tree.keys())[0]][value] = {} return tree def search(tree, value): if not tree: return False elif list(tree.keys())[0] == value: return True elif value < list(tree.keys())[0]: return search(tree[list(tree.keys())[0]], value) else: return search(tree[list(tree.keys())[0]].get(value), value) def delete(tree, value): if not search(tree, value): return False else: if list(tree.keys())[0] == value: if not tree[list(tree.keys())[0]]: del tree[list(tree.keys())[0]] elif len(tree[list(tree.keys())[0]]) == 1: tree[list(tree.keys())[0]] = list(tree[list(tree.keys())[0]].values())[0] else: min_key = min(list(tree[list(tree.keys())[0]+1].keys())) tree[min_key] = tree[list(tree.keys())[0]+1][min_key] tree[min_key][list(tree.keys())[0]] = tree[list(tree.keys())[0]] del tree[list(tree.keys())[0]] elif value < list(tree.keys())[0]: tree[list(tree.keys())[0]] = delete(tree[list(tree.keys())[0]], value) else: tree[list(tree.keys())[0]][value] = delete(tree[list(tree.keys())[0]].get(value), value) return treeSince the dictionary is unordered, this implementation may cause the binary search tree to be unbalanced, affecting the efficiency of insertion, search, and deletion operations. 4. Use stack to implementUsing stack (Stack) can implement a simple binary search tree, which can implement operations such as insertion, search, and deletion through iteration. The specific implementation process is as follows:
- Define a node class, including node value, left and right sub-nodes and other attributes.
- Define a stack and initially push the root node onto the stack.
- When the stack is not empty, take out the top element of the stack and operate on it: if the value to be inserted is less than the current node value, insert the value to be inserted as the left child node , and push the left child node onto the stack; if the value to be inserted is greater than the current node value, insert the value to be inserted as the right child node, and push the right child node onto the stack; if the value to be found or deleted is equal to the current node value, Then return or delete the node.
- After the operation is completed, continue to take the next node from the stack and operate until the stack is empty.
class Node: def __init__(self, data): self.data = data self.left = None self.right = None def insert(root, value): if not root: return Node(value) stack = [root] while stack: node = stack.pop() if value < node.data: if node.left is None: node.left = Node(value) break else: stack.append(node.left) elif value > node.data: if node.right is None: node.right = Node(value) break else: stack.append(node.right) def search(root, value): stack = [root] while stack: node = stack.pop() if node.data == value: return True elif value < node.data and node.left: stack.append(node.left) elif value > node.data and node.right: stack.append(node.right) return False def delete(root, value): if root is None: return None if value < root.data: root.left = delete(root.left, value) elif value > root.data: root.right = delete(root.right, value) else: if root.left is None: temp = root.right del root return temp elif root.right is None: temp = root.left del root return temp else: temp = root.right while temp.left is not None: temp = temp.left root.data = temp.data root.right = delete(root.right, temp.data) return root
The above is the detailed content of What are the methods to implement binary search tree in python. For more information, please follow other related articles on the PHP Chinese website!

Pythonusesahybridapproach,combiningcompilationtobytecodeandinterpretation.1)Codeiscompiledtoplatform-independentbytecode.2)BytecodeisinterpretedbythePythonVirtualMachine,enhancingefficiencyandportability.

ThekeydifferencesbetweenPython's"for"and"while"loopsare:1)"For"loopsareidealforiteratingoversequencesorknowniterations,while2)"while"loopsarebetterforcontinuinguntilaconditionismetwithoutpredefinediterations.Un

In Python, you can connect lists and manage duplicate elements through a variety of methods: 1) Use operators or extend() to retain all duplicate elements; 2) Convert to sets and then return to lists to remove all duplicate elements, but the original order will be lost; 3) Use loops or list comprehensions to combine sets to remove duplicate elements and maintain the original order.

ThefastestmethodforlistconcatenationinPythondependsonlistsize:1)Forsmalllists,the operatorisefficient.2)Forlargerlists,list.extend()orlistcomprehensionisfaster,withextend()beingmorememory-efficientbymodifyinglistsin-place.

ToinsertelementsintoaPythonlist,useappend()toaddtotheend,insert()foraspecificposition,andextend()formultipleelements.1)Useappend()foraddingsingleitemstotheend.2)Useinsert()toaddataspecificindex,thoughit'sslowerforlargelists.3)Useextend()toaddmultiple

Pythonlistsareimplementedasdynamicarrays,notlinkedlists.1)Theyarestoredincontiguousmemoryblocks,whichmayrequirereallocationwhenappendingitems,impactingperformance.2)Linkedlistswouldofferefficientinsertions/deletionsbutslowerindexedaccess,leadingPytho

Pythonoffersfourmainmethodstoremoveelementsfromalist:1)remove(value)removesthefirstoccurrenceofavalue,2)pop(index)removesandreturnsanelementataspecifiedindex,3)delstatementremoveselementsbyindexorslice,and4)clear()removesallitemsfromthelist.Eachmetho

Toresolvea"Permissiondenied"errorwhenrunningascript,followthesesteps:1)Checkandadjustthescript'spermissionsusingchmod xmyscript.shtomakeitexecutable.2)Ensurethescriptislocatedinadirectorywhereyouhavewritepermissions,suchasyourhomedirectory.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

Dreamweaver Mac version
Visual web development tools

WebStorm Mac version
Useful JavaScript development tools
