


Introduction to trees
Trees are different from linked lists or hash tables. They are a non-linear data structure. Trees are divided into binary trees, binary search trees, B-trees, B-trees, red-black trees, etc. .
Tree is a data structure, which is a collection of hierarchical relationships composed of n limited nodes. If you use a picture to represent it, you can see that it looks like an upside-down tree. Therefore, we collectively call this type of data structure a tree, with the roots at the top and the leaves at the bottom. A general tree has the following characteristics:
Each node has 0 or more child nodes
The node without a parent node is called the root Node
Each non-root node has and has only one parent node
Each child node can be divided into multiple disjoint children Tree
The definition of a binary tree is: each node has at most two child nodes. That is, each node can only have the following four situations:
Both the left subtree and the right subtree are empty
Only the left subtree exists Tree
Only the right subtree exists
Both the left subtree and the right subtree exist
binary search tree
Binary search tree is also called binary sorting tree. It is either an empty tree or a binary tree with the following properties:
- ## If its left subtree is not empty, then the values of all nodes on the left subtree are less than the value of the root node. If its right subtree is not empty, then the values of all nodes on the right subtree are greater than the value of the root node.
- Its left and right subtrees are also binary search trees respectively
class Node: def __init__(self, data): self.data = data self.left = None self.right = None class BST: def __init__(self): self.root = None def insert(self, value): if self.root is None: self.root = Node(value) else: self._insert(value, self.root) def _insert(self, value, node): if value < node.data: if node.left is None: node.left = Node(value) else: self._insert(value, node.left) elif value > node.data: if node.right is None: node.right = Node(value) else: self._insert(value, node.right) def search(self, value): if self.root is None: return False else: return self._search(value, self.root) def _search(self, value, node): if node is None: return False elif node.data == value: return True elif value < node.data: return self._search(value, node.left) else: return self._search(value, node.right) def delete(self, value): if self.root is None: return False else: self.root = self._delete(value, self.root) def _delete(self, value, node): if node is None: return node elif value < node.data: node.left = self._delete(value, node.left) elif value > node.data: node.right = self._delete(value, node.right) else: if node.left is None and node.right is None: del node return None elif node.left is None: temp = node.right del node return temp elif node.right is None: temp = node.left del node return temp else: temp = self._find_min(node.right) node.data = temp.data node.right = self._delete(temp.data, node.right) return node def _find_min(self, node): while node.left is not None: node = node.left return node2. Use list implementationUse a list to store the elements of the binary search tree, and then implement insertion, search, and deletion through the positional relationship of the elements in the list Wait for operations. The code example is as follows:
class BST: def __init__(self): self.values = [] def insert(self, value): if len(self.values) == 0: self.values.append(value) else: self._insert(value, 0) def _insert(self, value, index): if value < self.values[index]: left_child_index = 2 * index + 1 if left_child_index >= len(self.values): self.values.extend([None] * (left_child_index - len(self.values) + 1)) if self.values[left_child_index] is None: self.values[left_child_index] = value else: self._insert(value, left_child_index) else: right_child_index = 2 * index + 2 if right_child_index >= len(self.values): self.values.extend([None] * (right_child_index - len(self.values) + 1)) if self.values[right_child_index] is None: self.values[right_child_index] = value else: self._insert(value, right_child_index) def search(self, value): if value in self.values: return True else: return False def delete(self, value): if value not in self.values: return False else: index = self.values.index(value) self._delete(index) return True def _delete(self, index): left_child_index = 2 * index + 1 right_child_index = 2 * index + 2 if left_child_index < len(self.values) and self.values[left_child_index] is not None: self._delete(left_child_index) if right_child_index < len(self.values) and self.values[right_child_index] is not None: self3. Use a dictionary to implementThe key of the dictionary represents the node value, and the value of the dictionary is a dictionary containing the left and right child nodes. The code example is as follows:
def insert(tree, value): if not tree: return {value: {}} elif value < list(tree.keys())[0]: tree[list(tree.keys())[0]] = insert(tree[list(tree.keys())[0]], value) else: tree[list(tree.keys())[0]][value] = {} return tree def search(tree, value): if not tree: return False elif list(tree.keys())[0] == value: return True elif value < list(tree.keys())[0]: return search(tree[list(tree.keys())[0]], value) else: return search(tree[list(tree.keys())[0]].get(value), value) def delete(tree, value): if not search(tree, value): return False else: if list(tree.keys())[0] == value: if not tree[list(tree.keys())[0]]: del tree[list(tree.keys())[0]] elif len(tree[list(tree.keys())[0]]) == 1: tree[list(tree.keys())[0]] = list(tree[list(tree.keys())[0]].values())[0] else: min_key = min(list(tree[list(tree.keys())[0]+1].keys())) tree[min_key] = tree[list(tree.keys())[0]+1][min_key] tree[min_key][list(tree.keys())[0]] = tree[list(tree.keys())[0]] del tree[list(tree.keys())[0]] elif value < list(tree.keys())[0]: tree[list(tree.keys())[0]] = delete(tree[list(tree.keys())[0]], value) else: tree[list(tree.keys())[0]][value] = delete(tree[list(tree.keys())[0]].get(value), value) return treeSince the dictionary is unordered, this implementation may cause the binary search tree to be unbalanced, affecting the efficiency of insertion, search, and deletion operations. 4. Use stack to implementUsing stack (Stack) can implement a simple binary search tree, which can implement operations such as insertion, search, and deletion through iteration. The specific implementation process is as follows:
- Define a node class, including node value, left and right sub-nodes and other attributes.
- Define a stack and initially push the root node onto the stack.
- When the stack is not empty, take out the top element of the stack and operate on it: if the value to be inserted is less than the current node value, insert the value to be inserted as the left child node , and push the left child node onto the stack; if the value to be inserted is greater than the current node value, insert the value to be inserted as the right child node, and push the right child node onto the stack; if the value to be found or deleted is equal to the current node value, Then return or delete the node.
- After the operation is completed, continue to take the next node from the stack and operate until the stack is empty.
class Node: def __init__(self, data): self.data = data self.left = None self.right = None def insert(root, value): if not root: return Node(value) stack = [root] while stack: node = stack.pop() if value < node.data: if node.left is None: node.left = Node(value) break else: stack.append(node.left) elif value > node.data: if node.right is None: node.right = Node(value) break else: stack.append(node.right) def search(root, value): stack = [root] while stack: node = stack.pop() if node.data == value: return True elif value < node.data and node.left: stack.append(node.left) elif value > node.data and node.right: stack.append(node.right) return False def delete(root, value): if root is None: return None if value < root.data: root.left = delete(root.left, value) elif value > root.data: root.right = delete(root.right, value) else: if root.left is None: temp = root.right del root return temp elif root.right is None: temp = root.left del root return temp else: temp = root.right while temp.left is not None: temp = temp.left root.data = temp.data root.right = delete(root.right, temp.data) return root
The above is the detailed content of What are the methods to implement binary search tree in python. For more information, please follow other related articles on the PHP Chinese website!

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),
