Redis is a high-performance, open source key-value storage system that is fast, reliable, and efficient. It is widely used in cache, queue, counting, message publishing/subscription, etc. with many application scenarios. In addition, Redis is also widely used in image search and recognition. This article mainly introduces application examples in this area.
1. The application of Redis in image search
- The combination of Redis and image retrieval engine
The image retrieval engine retrieves images and reference images by comparing them The similarity is used to achieve image retrieval. Image retrieval engines have the advantages of fast retrieval speed and small storage space. However, due to the need to compare the similarity of each image with a reference image, there is a bottleneck in processing large-scale images. Redis, as a cache system, can better solve this problem.
The specific implementation method is: store the image data in binary form in Redis, use the MD5 value of the image as the key value, and calculate the hash value of the image data through the code to obtain the value. Therefore, when obtaining the binary data of any image, you only need to quickly obtain it based on its MD5 value through Redis. It can be seen that the cache performance of Redis has brought great acceleration and optimization effects to the image retrieval engine when processing massive images.
- The combination of Redis and fault-tolerant convolutional neural network
Image search engines usually use two methods: synchronous and asynchronous. The idea of the asynchronous method is to consider fault tolerance into the entire process, that is, it can automatically recover when an error occurs, thereby ensuring the reliability of the search engine. As a highly reliable cache system, Redis can greatly enhance the effect of fault-tolerant convolutional neural networks (Resilient Convolutional Neural Networks, RCNN for short).
The specific implementation method is: store the image data in Redis, and process different RCNNs in parallel. During the processing, once an error occurs in an RCNN process, it can try to obtain data from Redis for recovery, thereby preventing the erroneous RCNN from affecting the search quality of the entire image search engine. This method effectively reduces the error rate in image search engines and improves the robustness of the system.
2. The application of Redis in image recognition
- The combination of Redis and convolutional neural network
In image recognition, convolutional neural network It is a widely used method. Due to its large amount of calculation and high complexity, it requires the use of high-performance computers and algorithm optimization methods. Redis provides a high-performance caching mechanism for convolutional neural networks. At the same time, Redis's message publishing and subscription functions can also be used to optimize the communication speed of convolutional neural networks and further improve the accuracy of recognition.
The specific implementation method is: distribute the data to different convolutional neural network nodes for processing, at the same time store the results calculated by each node in Redis, and call the message publishing/subscription function of Redis in real time Update intermediate results. This method is beneficial to improve the speed and accuracy of image recognition.
- The combination of Redis and image classification methods
In image recognition based on image classification methods, Redis as a cache system can effectively improve model training and image processing speed, thus improving the accuracy of recognition. At the same time, Redis can also optimize the execution process of the algorithm by establishing a message queue on top of the image classification method, avoiding unnecessary waiting time and waste of resources.
The specific implementation method is: store the data in Redis, create a Redis list for each classification instance, and classify it according to its storage order. At the same time, by establishing a message queue to process newly added data, resource conflicts during data classification are avoided, thereby making the training effect of the image classifier better and significantly improving the recognition accuracy of image recognition.
In general, the application of Redis in image search and recognition greatly enhances the reliability and robustness of the system, and can also accelerate image processing and calculation by improving system operating efficiency. With the continuous advancement and innovation of technology, I believe that Redis will be more and more widely used in image search and recognition.
The above is the detailed content of Application examples of Redis in image search and recognition. For more information, please follow other related articles on the PHP Chinese website!

Redis是现在最热门的key-value数据库,Redis的最大特点是key-value存储所带来的简单和高性能;相较于MongoDB和Redis,晚一年发布的ES可能知名度要低一些,ES的特点是搜索,ES是围绕搜索设计的。

本篇文章给大家带来了关于redis的相关知识,其中主要介绍了关于redis的一些优势和特点,Redis 是一个开源的使用ANSI C语言编写、遵守 BSD 协议、支持网络、可基于内存、分布式存储数据库,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于redis的相关知识,其中主要介绍了Redis Cluster集群收缩主从节点的相关问题,包括了Cluster集群收缩概念、将6390主节点从集群中收缩、验证数据迁移过程是否导致数据异常等,希望对大家有帮助。

本篇文章给大家带来了关于redis的相关知识,其中主要介绍了Redis实现排行榜及相同积分按时间排序,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,希望对大家有帮助。

本篇文章给大家带来了关于redis的相关知识,其中主要介绍了关于原子操作中命令原子性的相关问题,包括了处理并发的方案、编程模型、多IO线程以及单命令的相关内容,下面一起看一下,希望对大家有帮助。

本篇文章给大家带来了关于redis的相关知识,其中主要介绍了bitmap问题,Redis 为我们提供了位图这一数据结构,位图数据结构其实并不是一个全新的玩意,我们可以简单的认为就是个数组,只是里面的内容只能为0或1而已,希望对大家有帮助。

本篇文章给大家带来了关于redis的相关知识,其中主要介绍了Redis实现排行榜及相同积分按时间排序,本文通过实例代码给大家介绍的非常详细,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于redis的相关知识,其中主要介绍了关于实现秒杀的相关内容,包括了秒杀逻辑、存在的链接超时、超卖和库存遗留的问题,下面一起来看一下,希望对大家有帮助。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

Atom editor mac version download
The most popular open source editor

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Dreamweaver Mac version
Visual web development tools
