search
HomeBackend DevelopmentGolangGolang object to json

Converting an object to json in golang is a very common thing, I believe most golang developers will encounter it. This article will share the methods and techniques on how to convert an object into json in golang.

  1. Using the encoding/json package

First look at the encoding/json package provided in the golang standard library. This package provides very simple and easy-to-use functions and types that allow us to easily convert an object into a json-formatted string or convert a json-formatted string into an object.

It should be noted that the object must be exportable (that is, the first letter is capitalized), otherwise the json package cannot access its fields.

The following is a simple example code that uses the encoding/json package to convert the Student object into a json format string:

package main

import (
    "encoding/json"
    "fmt"
)

type Student struct {
    Name  string
    Age   int
    Score float64
}

func main() {
    s := Student{
        Name:  "Tom",
        Age:   18,
        Score: 90.5,
    }
    b, err := json.Marshal(s)
    if err != nil {
        fmt.Println("json.Marshal failed:", err)
        return
    }
    fmt.Println(string(b))
}

Output:

{"Name":"Tom","Age":18,"Score":90.5}

As you can see, the json package provides The Marshal function can serialize a structure object into a json format string.

For a complex object, we can also easily serialize it into a json format string. For example, the following array consists of multiple Student objects:

package main

import (
    "encoding/json"
    "fmt"
)

type Student struct {
    Name  string
    Age   int
    Score float64
}

func main() {
    students := []Student{
        {Name: "Tom", Age: 18, Score: 90.5},
        {Name: "Jerry", Age: 19, Score: 96.5},
        {Name: "Alice", Age: 17, Score: 85.5},
    }
    b, err := json.Marshal(students)
    if err != nil {
        fmt.Println("json.Marshal failed:", err)
        return
    }
    fmt.Println(string(b))
}

Output:

[{"Name":"Tom","Age":18,"Score":90.5},{"Name":"Jerry","Age":19,"Score":96.5},{"Name":"Alice","Age":17,"Score":85.5}]

Similarly, we can use the Unmarshal function provided by the json package to parse a json format string into a object. For example:

package main

import (
    "encoding/json"
    "fmt"
)

type Point struct {
    X int `json:"x"`
    Y int `json:"y"`
}

type Line struct {
    Start Point `json:"start"`
    End   Point `json:"end"`
}

func main() {
    jsonStr := `
    {
        "start": {
            "x": 1,
            "y": 2
        },
        "end": {
            "x": 3,
            "y": 4
        }
    }`
    var line Line
    err := json.Unmarshal([]byte(jsonStr), &line)
    if err != nil {
        fmt.Println("json.Unmarshal failed:", err)
        return
    }
    fmt.Printf("%#v
", line)
}

Output:

main.Line{Start:main.Point{X:1, Y:2}, End:main.Point{X:3, Y:4}}

In this sample code, we define a Line object, which contains two Point objects. Use the Unmarshal function provided by the json package to parse a json format string into a Line object and then output it.

  1. Customize json serialization and deserialization through structure tag

If we want to customize the output in json format, such as modifying the name of a field ,what can we do about it? At this time, the struct tag in golang comes in handy.

In golang, struct tag is a way to annotate struct fields, which can be achieved by adding a string after the field type. When using json package serialization and deserialization, we can use struct tag to control the serialization and deserialization process.

The following is a simple sample code that demonstrates how to use struct tag to control the process of json serialization and deserialization:

package main

import (
    "encoding/json"
    "fmt"
)

type Student struct {
    Name  string `json:"name"`
    Age   int    `json:"age"`
    Score float64
}

func main() {
    s := Student{
        Name:  "Tom",
        Age:   18,
        Score: 90.5,
    }
    fmt.Println("*** 序列化 ***")
    b, err := json.Marshal(s)
    if err != nil {
        fmt.Println("json.Marshal failed:", err)
        return
    }
    fmt.Println(string(b))

    fmt.Println("*** 反序列化 ***")
    jsonStr := `{"name":"Tom","age":18,"Score":90.5}`
    var student Student
    err = json.Unmarshal([]byte(jsonStr), &student)
    if err != nil {
        fmt.Println("json.Unmarshal failed:", err)
        return
    }
    fmt.Printf("%#v
", student)
}

Output:

*** 序列化 ***
{"name":"Tom","age":18,"Score":90.5}
*** 反序列化 ***
main.Student{Name:"Tom", Age:18, Score:90.5}

Here, we will The Name field in the Student object is marked as "name", so that when serialized using the json.Marshal function, its name will be changed to "name". Similarly, when deserializing using the json.Unmarshal function, "name" will be automatically recognized as the Name field.

Through the form of struct tag, we can also control the visibility of fields in the json output. For example:

package main

import (
    "encoding/json"
    "fmt"
)

type Student struct {
    Name  string `json:"name,omitempty"`
    Age   int    `json:"age"`
    Score float64
}

func main() {
    s := Student{
        Age:   18,
        Score: 90.5,
    }
    fmt.Println("*** 序列化 ***")
    b, err := json.Marshal(s)
    if err != nil {
        fmt.Println("json.Marshal failed:", err)
        return
    }
    fmt.Println(string(b))

    fmt.Println("*** 反序列化 ***")
    jsonStr := `{"name":"Tom","age":18,"Score":90.5}`
    var student Student
    err = json.Unmarshal([]byte(jsonStr), &student)
    if err != nil {
        fmt.Println("json.Unmarshal failed:", err)
        return
    }
    fmt.Printf("%#v
", student)
}

Output:

*** 序列化 ***
{"age":18,"Score":90.5}
*** 反序列化 ***
main.Student{Name:"Tom", Age:18, Score:90.5}

Here we mark the Name field as "omitempty", which means that if the value of the Name field is zero (i.e. ""), then when json is output Just ignore this field.

  1. Using third-party libraries

When we need to perform more complex json serialization and deserialization, the golang standard library may be a little weak. At this time, we can use some third-party libraries to help us achieve more flexible operations.

The following is a sample code that uses a third-party library for json serialization and deserialization. This sample code uses the json-iterator/go package, which is currently one of the fastest golang json libraries.

package main

import (
    "fmt"
    "github.com/json-iterator/go"
)

type Student struct {
    Name  string `json:"name"`
    Age   int    `json:"age"`
    Score float64 `json:"score,omitempty"`
}

func main() {
    student := Student{
        Name:  "Tom",
        Age:   18,
        Score: 0,
    }
    fmt.Println("*** 序列化 ***")
    json := jsoniter.ConfigCompatibleWithStandardLibrary
    b, err := json.Marshal(student)
    if err != nil {
        fmt.Println("json.Marshal failed:", err)
        return
    }
    fmt.Println(string(b))

    fmt.Println("*** 反序列化 ***")
    jsonStr := `{"name":"Tom","age":18}`
    err = json.Unmarshal([]byte(jsonStr), &student)
    if err != nil {
        fmt.Println("json.Unmarshal failed:", err)
        return
    }
    fmt.Printf("%#v
", student)
}

Output:

*** 序列化 ***
{"name":"Tom","age":18}
*** 反序列化 ***
main.Student{Name:"Tom", Age:18, Score:0}

It should be noted that although using third-party libraries can achieve more flexible json operations, it may also introduce problems such as reduced performance or increased code complexity. The choice needs to be made based on specific scenarios.

This article introduces several methods and techniques for converting objects into json in golang. I hope this article can be helpful to readers.

The above is the detailed content of Golang object to json. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Golang vs. Python: The Pros and ConsGolang vs. Python: The Pros and ConsApr 21, 2025 am 12:17 AM

Golangisidealforbuildingscalablesystemsduetoitsefficiencyandconcurrency,whilePythonexcelsinquickscriptinganddataanalysisduetoitssimplicityandvastecosystem.Golang'sdesignencouragesclean,readablecodeanditsgoroutinesenableefficientconcurrentoperations,t

Golang and C  : Concurrency vs. Raw SpeedGolang and C : Concurrency vs. Raw SpeedApr 21, 2025 am 12:16 AM

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Why Use Golang? Benefits and Advantages ExplainedWhy Use Golang? Benefits and Advantages ExplainedApr 21, 2025 am 12:15 AM

Reasons for choosing Golang include: 1) high concurrency performance, 2) static type system, 3) garbage collection mechanism, 4) rich standard libraries and ecosystems, which make it an ideal choice for developing efficient and reliable software.

Golang vs. C  : Performance and Speed ComparisonGolang vs. C : Performance and Speed ComparisonApr 21, 2025 am 12:13 AM

Golang is suitable for rapid development and concurrent scenarios, and C is suitable for scenarios where extreme performance and low-level control are required. 1) Golang improves performance through garbage collection and concurrency mechanisms, and is suitable for high-concurrency Web service development. 2) C achieves the ultimate performance through manual memory management and compiler optimization, and is suitable for embedded system development.

Is Golang Faster Than C  ? Exploring the LimitsIs Golang Faster Than C ? Exploring the LimitsApr 20, 2025 am 12:19 AM

Golang performs better in compilation time and concurrent processing, while C has more advantages in running speed and memory management. 1.Golang has fast compilation speed and is suitable for rapid development. 2.C runs fast and is suitable for performance-critical applications. 3. Golang is simple and efficient in concurrent processing, suitable for concurrent programming. 4.C Manual memory management provides higher performance, but increases development complexity.

Golang: From Web Services to System ProgrammingGolang: From Web Services to System ProgrammingApr 20, 2025 am 12:18 AM

Golang's application in web services and system programming is mainly reflected in its simplicity, efficiency and concurrency. 1) In web services, Golang supports the creation of high-performance web applications and APIs through powerful HTTP libraries and concurrent processing capabilities. 2) In system programming, Golang uses features close to hardware and compatibility with C language to be suitable for operating system development and embedded systems.

Golang vs. C  : Benchmarks and Real-World PerformanceGolang vs. C : Benchmarks and Real-World PerformanceApr 20, 2025 am 12:18 AM

Golang and C have their own advantages and disadvantages in performance comparison: 1. Golang is suitable for high concurrency and rapid development, but garbage collection may affect performance; 2.C provides higher performance and hardware control, but has high development complexity. When making a choice, you need to consider project requirements and team skills in a comprehensive way.

Golang vs. Python: A Comparative AnalysisGolang vs. Python: A Comparative AnalysisApr 20, 2025 am 12:17 AM

Golang is suitable for high-performance and concurrent programming scenarios, while Python is suitable for rapid development and data processing. 1.Golang emphasizes simplicity and efficiency, and is suitable for back-end services and microservices. 2. Python is known for its concise syntax and rich libraries, suitable for data science and machine learning.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.