Way
## 1. 新建列表,如果新列表中不存在,则添加到新列表。 def unique(data): new_list = [] for item in data: if item not in new_list: new_list.append(item) return new_list # test data = ['a', 'a', 1, 1, 2, 2, 'b', 'b', 2, 1] start_time = time.time() print("new_list + not in data:", unique(data)) print("time:" + str((time.time() - start_time) * 1000) + " ms") # result $ python -V Python 2.7.16 $ python unique.py ('for list + not in. data:', ['a', 1, 2, 'b']) time:0.0441074371338 ms ## 2. 新建列表。根据下标判断是否存在新列表中,如果新列表中不存在则添加到新列表。 def unique(data): new_list = [] for i in range(len(data)): if data[i] not in new_list: new_list.append(data[i]) return new_list ## 2.1 新建列表,使用列表推导来去重。是前一种的简写。 def unique(data): new_list = [] [new_list.append(i) for i in data if not i in new_list] return new_list # test data = ['a', 'a', 1, 1, 2, 2, 'b', 'b', 2, 1] start_time = time.time() print("for range + not in. data:", unique(data)) print("time:" + str((time.time() - start_time) * 1000) + " ms") ## 3. 通过index找不到该项,则追加到新列表中。index找不到会报错,因此放在异常处理里。 def unique(data): new_list = [] for i in range(len(data)): item = data[i] try: if (new_list.index(item) 0): l -= 1 i = l while i > 0: i -= 1 if data[i] == data[l]: del data[l] break return data # test data = ['a', 'a', 1, 1, 2, 2, 'b', 'b', 2, 1] start_time = time.time() print("one list while. last -> first result. data:", unique(data)) print("time:" + str((time.time() - start_time) * 1000) + " ms") ## 6. 在原有列表上移除重复项目。自前往后遍历,逐个与后面项比较,如果值相同且下标相同,则移除当前项。 def unique(data): l = len(data) i = 0 while i last result. data:", unique(data)) print("time:" + str((time.time() - start_time) * 1000) + " ms") ## 7. 新建列表。遍历列表,利用index比较出现的位置,如果出现在第一次的位置则追加到新数组。 def unique(data): new_list = [] for i in range(len(data)): if i == data.index(data[i]): new_list.append(data[i]) return new_list # test data = ['a', 'a', 1, 1, 2, 2, 'b', 'b', 2, 1] start_time = time.time() print("for range + index. data:", unique(data)) print("time:" + str((time.time() - start_time) * 1000) + " ms") ## 8. 利用字典属性唯一性来实现去重复。 def unique(data): obj = {} for item in data: obj[item] = item return obj.values() # test data = ['a', 'a', 1, 1, 2, 2, 'b', 'b', 2, 1] start_time = time.time() print("list + dict:", unique(data)) print("time:" + str((time.time() - start_time) * 1000) + " ms") ## 或者直接通过dict.fromkeys来实现 print("dict fromkeys:", dict.fromkeys(data).keys()) ## 9. 利用filter函数,即把不符合条件的过滤掉。这里filter不支持下标,因此需要借助外部列表存储不重复项 def uniq(item): i = data.index(item) if (item not in new_list): new_list.append(item) return True return False def unique(item): if obj.get(item) == None: obj[item] = item return True return False # test data = ['a', 'a', 1, 1, 2, 2, 'b', 'b', 2, 1] start_time = time.time() new_list = [] print('filter + list + not in: ', filter(uniq, data)) print("time:" + str((time.time() - start_time) * 1000) + " ms") ## 10. 利用字典结合过滤来实现去重复。 def unique(item): if obj.get(item) == None: obj[item] = item return True return False # test data = ['a', 'a', 1, 1, 2, 2, 'b', 'b', 2, 1] start_time = time.time() obj = {} print("filter + dict + get:", filter(unique, data)) print("time:" + str((time.time() - start_time) * 1000) + " ms") ## 11. 利用map来实现去重复。与map与filter类似,是一个高阶函数。可以针对其中项逐个修改操作。 ## 与filter不同map会保留原有项目,并不会删除,因此值可以改为None,然后再过滤掉。 def unique(item): if item not in new_list: new_list.append(item) return item return None # test data = ['a', 'a', 1, 1, 2, 2, 'b', 'b', 2, 1] new_list = [] start_time = time.time() print("list from Map:", filter(lambda item: item != None, map(unique, data))) print("time:" + str((time.time() - start_time) * 1000) + " ms") ## 12. 利用set数据结构里key的唯一性来去重复 data = ['a', 'a', 1, 1, 2, 2, 'b', 'b', 2, 1] print("from Set:", list(set(data))) print("time:" + str((time.time() - start_time) * 1000) + " ms") ## 13. 提前排序,从后向前遍历,将当前项与前一项对比,如果重复则移除当前项 def unique(data): data.sort() l = len(data) while (l > 0): l -= 1 if (data[l] == data[l - 1]): data.remove(data[l]) return data # test data = ['a', 'a', 1, 1, 2, 2, 'b', 'b', 2, 1] start_time = time.time() print("sort + remove:", unique(data)) print("time:" + str((time.time() - start_time) * 1000) + " ms") ## 14. 提前排序,自前往后遍历,将当前项与后一项对比,如果重复则移除当前项 def unique(data): """ in python 3: TypeError: ' 1): l -= 1 if (data[last] == data[l - 1]): is_repeat = True break if (is_repeat): del data[last] return recursion_unique(data, len - 1) # test data = ['a', 'a', 1, 1, 2, 2, 'b', 'b', 2, 1] start_time = time.time() print("recursion_unique:", recursion_unique(data, len(data))) print("time:" + str((time.time() - start_time) * 1000) + " ms") ## 17. 利用递归调用来去重复的另外一种方式。递归自后往前逐个调用,当长度为1时终止。 ## 与上一个递归不同,这里将不重复的项目作为结果拼接起来 def recursion_unique_new(data, len): if (len 1): l -= 1 if (data[last] == data[l - 1]): is_repeat = True break if (is_repeat): del data[last:] result = [] else: result = [data[last]] return recursion_unique_new(data, len - 1) + result # test data = ['a', 'a', 1, 1, 2, 2, 'b', 'b', 2, 1] start_time = time.time() print("recursion_unique_new:", recursion_unique_new(data, len(data))) print("time:" + str((time.time() - start_time) * 1000) + " ms") ## 18. 利用numpy lib库. 需提前安装 `pip install numpy` import numpy as np def unique(data): res = np.array(data) return list(np.unique(res)) # test data = ['a', 'a', 1, 1, 2, 2, 'b', 'b', 2, 1] start_time = time.time() print("import numpy as np.unique:", unique(data)) print("time:" + str((time.time() - start_time) * 1000) + " ms")

The above is the detailed content of How to implement list deduplication using Python?. For more information, please follow other related articles on the PHP Chinese website!

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

Python's real-world applications include data analytics, web development, artificial intelligence and automation. 1) In data analysis, Python uses Pandas and Matplotlib to process and visualize data. 2) In web development, Django and Flask frameworks simplify the creation of web applications. 3) In the field of artificial intelligence, TensorFlow and PyTorch are used to build and train models. 4) In terms of automation, Python scripts can be used for tasks such as copying files.

Python is widely used in data science, web development and automation scripting fields. 1) In data science, Python simplifies data processing and analysis through libraries such as NumPy and Pandas. 2) In web development, the Django and Flask frameworks enable developers to quickly build applications. 3) In automated scripts, Python's simplicity and standard library make it ideal.

Python's flexibility is reflected in multi-paradigm support and dynamic type systems, while ease of use comes from a simple syntax and rich standard library. 1. Flexibility: Supports object-oriented, functional and procedural programming, and dynamic type systems improve development efficiency. 2. Ease of use: The grammar is close to natural language, the standard library covers a wide range of functions, and simplifies the development process.

Python is highly favored for its simplicity and power, suitable for all needs from beginners to advanced developers. Its versatility is reflected in: 1) Easy to learn and use, simple syntax; 2) Rich libraries and frameworks, such as NumPy, Pandas, etc.; 3) Cross-platform support, which can be run on a variety of operating systems; 4) Suitable for scripting and automation tasks to improve work efficiency.

Yes, learn Python in two hours a day. 1. Develop a reasonable study plan, 2. Select the right learning resources, 3. Consolidate the knowledge learned through practice. These steps can help you master Python in a short time.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

WebStorm Mac version
Useful JavaScript development tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Atom editor mac version download
The most popular open source editor