Problem Demonstration
When we do not use polling locks, this problem may occur:
import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; public class DeadLockByReentrantLock { public static void main(String[] args) { Lock lockA = new ReentrantLock(); // 创建锁 A Lock lockB = new ReentrantLock(); // 创建锁 B // 创建线程 1 Thread t1 = new Thread(new Runnable() { @Override public void run() { lockA.lock(); // 加锁 System.out.println("线程 1:获取到锁 A!"); try { Thread.sleep(1000); System.out.println("线程 1:等待获取 B..."); lockB.lock(); // 加锁 try { System.out.println("线程 1:获取到锁 B!"); } finally { lockA.unlock(); // 释放锁 } } catch (InterruptedException e) { e.printStackTrace(); } finally { lockA.unlock(); // 释放锁 } } }); t1.start(); // 运行线程 // 创建线程 2 Thread t2 = new Thread(new Runnable() { @Override public void run() { lockB.lock(); // 加锁 System.out.println("线程 2:获取到锁 B!"); try { Thread.sleep(1000); System.out.println("线程 2:等待获取 A..."); lockA.lock(); // 加锁 try { System.out.println("线程 2:获取到锁 A!"); } finally { lockA.unlock(); // 释放锁 } } catch (InterruptedException e) { e.printStackTrace(); } finally { lockB.unlock(); // 释放锁 } } }); t2.start(); // 运行线程 } }
The execution results of the above code are as follows:
As can be seen from the above results, at this time, the program has threads waiting for each other and trying to obtain each other's (lock) resources. This is a typical situation. Deadlock problem.
Simple version of polling lock
When a deadlock problem occurs, we can use polling lock to solve it. Its implementation idea is to obtain multiple Lock, if any lock acquisition fails during the process, a rollback operation is performed, all locks owned by the current thread are released, and wait for the next re-execution. This can prevent multiple threads from owning and occupying the lock resources at the same time, thus directly solving the problem. For the problem of deadlock, the simple version of polling lock is implemented as follows:
import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; public class SolveDeadLockExample2 { public static void main(String[] args) { Lock lockA = new ReentrantLock(); // 创建锁 A Lock lockB = new ReentrantLock(); // 创建锁 B // 创建线程 1(使用轮询锁) Thread t1 = new Thread(new Runnable() { @Override public void run() { // 调用轮询锁 pollingLock(lockA, lockB); } }); t1.start(); // 运行线程 // 创建线程 2 Thread t2 = new Thread(new Runnable() { @Override public void run() { lockB.lock(); // 加锁 System.out.println("线程 2:获取到锁 B!"); try { Thread.sleep(1000); System.out.println("线程 2:等待获取 A..."); lockA.lock(); // 加锁 try { System.out.println("线程 2:获取到锁 A!"); } finally { lockA.unlock(); // 释放锁 } } catch (InterruptedException e) { e.printStackTrace(); } finally { lockB.unlock(); // 释放锁 } } }); t2.start(); // 运行线程 } /** * 轮询锁 */ private static void pollingLock(Lock lockA, Lock lockB) { // 轮询锁 while (true) { if (lockA.tryLock()) { // 尝试获取锁 System.out.println("线程 1:获取到锁 A!"); try { Thread.sleep(1000); System.out.println("线程 1:等待获取 B..."); if (lockB.tryLock()) { // 尝试获取锁 try { System.out.println("线程 1:获取到锁 B!"); } finally { lockB.unlock(); // 释放锁 System.out.println("线程 1:释放锁 B."); break; } } } catch (InterruptedException e) { e.printStackTrace(); } finally { lockA.unlock(); // 释放锁 System.out.println("线程 1:释放锁 A."); } } // 等待一秒再继续执行 try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } } } }
The execution result of the above code is as follows:
It can be seen from the above results that when we use polling locks in the program, deadlock problems will not occur, but the above polling locks are not perfect. Let’s take a look at this What kind of problems will there be with polling locks?
Question 1: Infinite loop
For the above simple version of the polling lock, if a thread continues to occupy the lock resource or occupies the lock resource for a long time, it will cause the polling lock to enter In an infinite loop state, it will try to keep acquiring lock resources, which will cause new problems and unnecessary performance overhead. Specific examples are as follows.
Counterexample
import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; public class SolveDeadLockExample { public static void main(String[] args) { Lock lockA = new ReentrantLock(); // 创建锁 A Lock lockB = new ReentrantLock(); // 创建锁 B // 创建线程 1(使用轮询锁) Thread t1 = new Thread(new Runnable() { @Override public void run() { // 调用轮询锁 pollingLock(lockA, lockB); } }); t1.start(); // 运行线程 // 创建线程 2 Thread t2 = new Thread(new Runnable() { @Override public void run() { lockB.lock(); // 加锁 System.out.println("线程 2:获取到锁 B!"); try { Thread.sleep(1000); System.out.println("线程 2:等待获取 A..."); lockA.lock(); // 加锁 try { System.out.println("线程 2:获取到锁 A!"); } finally { lockA.unlock(); // 释放锁 } } catch (InterruptedException e) { e.printStackTrace(); } finally { // 如果此处代码未执行,线程 2 一直未释放锁资源 // lockB.unlock(); } } }); t2.start(); // 运行线程 } /** * 轮询锁 */ public static void pollingLock(Lock lockA, Lock lockB) { while (true) { if (lockA.tryLock()) { // 尝试获取锁 System.out.println("线程 1:获取到锁 A!"); try { Thread.sleep(1000); System.out.println("线程 1:等待获取 B..."); if (lockB.tryLock()) { // 尝试获取锁 try { System.out.println("线程 1:获取到锁 B!"); } finally { lockB.unlock(); // 释放锁 System.out.println("线程 1:释放锁 B."); break; } } } catch (InterruptedException e) { e.printStackTrace(); } finally { lockA.unlock(); // 释放锁 System.out.println("线程 1:释放锁 A."); } } // 等待一秒再继续执行 try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } } } }
The execution results of the above code are as follows:
As can be seen from the above results, the thread 1 The polling lock enters an infinite loop state.
Optimized version
In view of the above infinite loop situation, we can improve the following two ideas:
Add the maximum number of times limit: If the lock has not been obtained after n attempts to obtain the lock, it is considered that the lock acquisition failed, and the polling is terminated after the failure strategy is executed (the failure strategy can be logging or other operations) ;
Add the maximum duration limit: If the lock has not been obtained after n seconds of trying to obtain the lock, it is considered that the lock acquisition failed, and after the failure strategy is executed Terminate polling.
Any one of the above strategies can solve the problem of infinite loop. For the sake of implementation cost, we can use the maximum number of polls to improve the polling lock,
The specific implementation code is as follows:
import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; public class SolveDeadLockExample { public static void main(String[] args) { Lock lockA = new ReentrantLock(); // 创建锁 A Lock lockB = new ReentrantLock(); // 创建锁 B // 创建线程 1(使用轮询锁) Thread t1 = new Thread(new Runnable() { @Override public void run() { // 调用轮询锁 pollingLock(lockA, lockB, 3); } }); t1.start(); // 运行线程 // 创建线程 2 Thread t2 = new Thread(new Runnable() { @Override public void run() { lockB.lock(); // 加锁 System.out.println("线程 2:获取到锁 B!"); try { Thread.sleep(1000); System.out.println("线程 2:等待获取 A..."); lockA.lock(); // 加锁 try { System.out.println("线程 2:获取到锁 A!"); } finally { lockA.unlock(); // 释放锁 } } catch (InterruptedException e) { e.printStackTrace(); } finally { // 线程 2 忘记释放锁资源 // lockB.unlock(); // 释放锁 } } }); t2.start(); // 运行线程 } /** * 轮询锁 * * maxCount:最大轮询次数 */ public static void pollingLock(Lock lockA, Lock lockB, int maxCount) { // 轮询次数计数器 int count = 0; while (true) { if (lockA.tryLock()) { // 尝试获取锁 System.out.println("线程 1:获取到锁 A!"); try { Thread.sleep(1000); System.out.println("线程 1:等待获取 B..."); if (lockB.tryLock()) { // 尝试获取锁 try { System.out.println("线程 1:获取到锁 B!"); } finally { lockB.unlock(); // 释放锁 System.out.println("线程 1:释放锁 B."); break; } } } catch (InterruptedException e) { e.printStackTrace(); } finally { lockA.unlock(); // 释放锁 System.out.println("线程 1:释放锁 A."); } } // 判断是否已经超过最大次数限制 if (count++ > maxCount) { // 终止循环 System.out.println("轮询锁获取失败,记录日志或执行其他失败策略"); return; } // 等待一秒再继续尝试获取锁 try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } } } }
The execution results of the above code are as follows:
It can be seen from the above results that after we improve it, the polling lock will not have the problem of infinite loop. It will terminate execution after trying a certain number of times.
Problem 2: Thread starvation
The polling waiting time of our above polling lock is a fixed time, as shown in the following code:
// 等待 1s 再尝试获取(轮询)锁 try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); }
This will cause the problem of thread starvation under special circumstances, that is, the problem of polling locks never being able to obtain the lock, such as the following example.
Counterexample
import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; public class SolveDeadLockExample { public static void main(String[] args) { Lock lockA = new ReentrantLock(); // 创建锁 A Lock lockB = new ReentrantLock(); // 创建锁 B // 创建线程 1(使用轮询锁) Thread t1 = new Thread(new Runnable() { @Override public void run() { // 调用轮询锁 pollingLock(lockA, lockB, 3); } }); t1.start(); // 运行线程 // 创建线程 2 Thread t2 = new Thread(new Runnable() { @Override public void run() { while (true) { lockB.lock(); // 加锁 System.out.println("线程 2:获取到锁 B!"); try { System.out.println("线程 2:等待获取 A..."); lockA.lock(); // 加锁 try { System.out.println("线程 2:获取到锁 A!"); } finally { lockA.unlock(); // 释放锁 } } finally { lockB.unlock(); // 释放锁 } // 等待一秒之后继续执行 try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } } } }); t2.start(); // 运行线程 } /** * 轮询锁 */ public static void pollingLock(Lock lockA, Lock lockB, int maxCount) { // 循环次数计数器 int count = 0; while (true) { if (lockA.tryLock()) { // 尝试获取锁 System.out.println("线程 1:获取到锁 A!"); try { Thread.sleep(100); // 等待 0.1s(获取锁需要的时间) System.out.println("线程 1:等待获取 B..."); if (lockB.tryLock()) { // 尝试获取锁 try { System.out.println("线程 1:获取到锁 B!"); } finally { lockB.unlock(); // 释放锁 System.out.println("线程 1:释放锁 B."); break; } } } catch (InterruptedException e) { e.printStackTrace(); } finally { lockA.unlock(); // 释放锁 System.out.println("线程 1:释放锁 A."); } } // 判断是否已经超过最大次数限制 if (count++ > maxCount) { // 终止循环 System.out.println("轮询锁获取失败,记录日志或执行其他失败策略"); return; } // 等待一秒再继续尝试获取锁 try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } } } }
The execution results of the above code are as follows:
As can be seen from the above results, the thread 1 (polling lock) has not successfully acquired the lock. The reason for this result is: Thread 1's waiting time for each poll is fixed 1s, and Thread 2 also has the same frequency, acquiring the lock every 1s, so This will cause thread 2 to always successfully acquire the lock first, while thread 1 will always be in a "starving" situation. The execution process is as shown in the figure below:
Optimized version
Next, we can improve the fixed waiting time of the polling lock to a fixed time random time method, so that we can avoid the problem of acquiring the lock. The frequency is consistent, which causes the problem of "starvation" of the polling lock. The specific implementation code is as follows:
import java.util.Random; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; public class SolveDeadLockExample { private static Random rdm = new Random(); public static void main(String[] args) { Lock lockA = new ReentrantLock(); // 创建锁 A Lock lockB = new ReentrantLock(); // 创建锁 B // 创建线程 1(使用轮询锁) Thread t1 = new Thread(new Runnable() { @Override public void run() { // 调用轮询锁 pollingLock(lockA, lockB, 3); } }); t1.start(); // 运行线程 // 创建线程 2 Thread t2 = new Thread(new Runnable() { @Override public void run() { while (true) { lockB.lock(); // 加锁 System.out.println("线程 2:获取到锁 B!"); try { System.out.println("线程 2:等待获取 A..."); lockA.lock(); // 加锁 try { System.out.println("线程 2:获取到锁 A!"); } finally { lockA.unlock(); // 释放锁 } } finally { lockB.unlock(); // 释放锁 } // 等待一秒之后继续执行 try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } } } }); t2.start(); // 运行线程 } /** * 轮询锁 */ public static void pollingLock(Lock lockA, Lock lockB, int maxCount) { // 循环次数计数器 int count = 0; while (true) { if (lockA.tryLock()) { // 尝试获取锁 System.out.println("线程 1:获取到锁 A!"); try { Thread.sleep(100); // 等待 0.1s(获取锁需要的时间) System.out.println("线程 1:等待获取 B..."); if (lockB.tryLock()) { // 尝试获取锁 try { System.out.println("线程 1:获取到锁 B!"); } finally { lockB.unlock(); // 释放锁 System.out.println("线程 1:释放锁 B."); break; } } } catch (InterruptedException e) { e.printStackTrace(); } finally { lockA.unlock(); // 释放锁 System.out.println("线程 1:释放锁 A."); } } // 判断是否已经超过最大次数限制 if (count++ > maxCount) { // 终止循环 System.out.println("轮询锁获取失败,记录日志或执行其他失败策略"); return; } // 等待一定时间(固定时间 + 随机时间)之后再继续尝试获取锁 try { Thread.sleep(300 + rdm.nextInt(8) * 100); // 固定时间 + 随机时间 } catch (InterruptedException e) { e.printStackTrace(); } } } }
The execution results of the above code are as follows:
The above is the detailed content of How to solve problems when using polling locks in Java?. For more information, please follow other related articles on the PHP Chinese website!

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于结构化数据处理开源库SPL的相关问题,下面就一起来看一下java下理想的结构化数据处理类库,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于PriorityQueue优先级队列的相关知识,Java集合框架中提供了PriorityQueue和PriorityBlockingQueue两种类型的优先级队列,PriorityQueue是线程不安全的,PriorityBlockingQueue是线程安全的,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于java锁的相关问题,包括了独占锁、悲观锁、乐观锁、共享锁等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于多线程的相关问题,包括了线程安装、线程加锁与线程不安全的原因、线程安全的标准类等等内容,希望对大家有帮助。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于枚举的相关问题,包括了枚举的基本操作、集合类对枚举的支持等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Java的相关知识,其中主要介绍了关于关键字中this和super的相关问题,以及他们的一些区别,下面一起来看一下,希望对大家有帮助。

封装是一种信息隐藏技术,是指一种将抽象性函式接口的实现细节部分包装、隐藏起来的方法;封装可以被认为是一个保护屏障,防止指定类的代码和数据被外部类定义的代码随机访问。封装可以通过关键字private,protected和public实现。

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于平衡二叉树(AVL树)的相关知识,AVL树本质上是带了平衡功能的二叉查找树,下面一起来看一下,希望对大家有帮助。


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

Notepad++7.3.1
Easy-to-use and free code editor

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

VSCode Windows 64-bit Download
A free and powerful IDE editor launched by Microsoft

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software
