


We know that score-based models and denoising diffusion probability models (DDPM) are two powerful types of generative models that generate samples by inverting the diffusion process. These two types of models have been unified into a single framework in the paper "Score-based generative modeling through stochastic differential equations" by Yang Song and other researchers, and are widely known as diffusion models.
At present, the diffusion model has achieved great success in a series of applications including image, audio, video generation and solving inverse problems. In the paper "Elucidating the design space of diffusionbased generative models", researchers such as Tero Karras analyzed the design space of the diffusion model and identified three stages, namely i) selecting the scheduling of the noise level, ii) selecting the network parameters. ization (each parameterization generates a different loss function), iii) design the sampling algorithm.
Recently, in an arXiv paper "Soft Diffusion: Score Matching for General Corruptions" jointly conducted by Google Research and UT-Austin, several researchers believe that the diffusion model still has a Important step: corruption. Generally speaking, corruption is a process of adding noise of different amplitudes, and for DDMP also requires rescaling. Although there have been attempts to use different distributions for diffusion, a general framework is still lacking. Therefore, the researchers proposed a diffusion model design framework for a more general damage process.
Specifically, they proposed a new training objective called Soft Score Matching and a novel sampling method, Momentum Sampler. Theoretical results show that for damage processes that satisfy regularity conditions, Soft Score MatchIng is able to learn their scores (i.e., likelihood gradients) that diffusion must transform any image into any image with non-zero likelihood.
In the experimental part, the researchers trained the model on CelebA and CIFAR-10. The model trained on CelebA achieved the SOTA FID score of the linear diffusion model - 1.85. At the same time, the model trained by the researchers is significantly faster than the model trained using the original Gaussian denoising diffusion.
##Paper address: https://arxiv.org/pdf/2209.05442.pdf
Method OverviewGenerally speaking, diffusion models generate images by inverting a damage process that gradually increases noise. The researchers show how to learn to invert diffusion involving linear deterministic degradation and stochastic additive noise.
#Specifically, the researchers demonstrated a framework for using a more general damage model to train a diffusion model, which consists of three parts, each for new training objectives. Soft Score Matching, novel sampling method Momentum Sampler, and scheduling of damage mechanisms.
Let’s first look at the training target Soft Score Matching. The name is inspired by soft filtering, which is a photography term that refers to a filter that removes fine details. It learns the fraction of a conventional linear damage process in a provable way, also incorporates a filtering process into the network, and trains the model to predict images after damage that match diffusion observations.
This training objective can prove that the score is learned as long as diffusion assigns non-zero probability to any clean, corrupted image pair. Additionally, this condition is always satisfied when additive noise is present in the damage.
Specifically, the researchers explored the damage process in the following form.
In the process, the researchers discovered that noise has both empirical (i.e., better results) and theoretical (i.e., for learning fractions) benefits. Very important. This also becomes a key difference from Cold Diffusion, a concurrent work that reverses deterministic corruption.
The second is the sampling method Momentum Sampling. The researchers demonstrated that the choice of sampler has a significant impact on the quality of the generated samples. They proposed Momentum Sampler for inverting a universal linear damage process. The sampler uses convex combinations of damage with different diffusion levels and is inspired by momentum methods in optimization.
This sampling method is inspired by the continuous formulation of the diffusion model proposed in the paper by Yang Song et al. above. The algorithm for Momentum Sampler is shown below.
The following figure visually shows the impact of different sampling methods on the quality of the generated samples. The image sampled with Naive Sampler on the left seems repetitive and lacks detail, while the Momentum Sampler on the right significantly improves the sampling quality and FID score.
The last thing is scheduling. Even if the type of degradation is predefined (like blurring), deciding how much to damage at each diffusion step is not trivial. The researchers propose a principled tool to guide the design of damage processes. To find the schedule, they minimize the Wasserstein distance between distributions along the path. Intuitively, researchers want a smooth transition from a completely corrupted distribution to a clean distribution.
Experimental Results
The researchers evaluated the proposed method on CelebA-64 and CIFAR-10, both of which are standard baselines for image generation. The main purpose of the experiment is to understand the role of damage type.
The researchers first tried to use blur and low-amplitude noise for damage. The results show that their proposed model achieves SOTA results on CelebA, i.e., an FID score of 1.85, outperforming all other methods that only add noise and possibly rescale the image. In addition, the FID score obtained on CIFAR-10 is 4.64, which is competitive even though it does not reach SOTA.
In addition, on the CIFAR-10 and CelebA data sets, the researcher's method also performed better on another indicator, sampling time. Another added benefit is significant computational advantages. Deblurring (almost no noise) appears to be a more efficient manipulation compared to image generation denoising methods.
The graph below shows how the FID score changes with the Number of Function Evaluations (NFE). As can be seen from the results, our model can achieve the same or better quality than the standard Gaussian denoising diffusion model using significantly fewer steps on the CIFAR-10 and CelebA datasets.
The above is the detailed content of Soft Diffusion: Google's new framework correctly schedules, learns and samples from a universal diffusion process. For more information, please follow other related articles on the PHP Chinese website!

1 前言在发布DALL·E的15个月后,OpenAI在今年春天带了续作DALL·E 2,以其更加惊艳的效果和丰富的可玩性迅速占领了各大AI社区的头条。近年来,随着生成对抗网络(GAN)、变分自编码器(VAE)、扩散模型(Diffusion models)的出现,深度学习已向世人展现其强大的图像生成能力;加上GPT-3、BERT等NLP模型的成功,人类正逐步打破文本和图像的信息界限。在DALL·E 2中,只需输入简单的文本(prompt),它就可以生成多张1024*1024的高清图像。这些图像甚至

Wav2vec 2.0 [1],HuBERT [2] 和 WavLM [3] 等语音预训练模型,通过在多达上万小时的无标注语音数据(如 Libri-light )上的自监督学习,显著提升了自动语音识别(Automatic Speech Recognition, ASR),语音合成(Text-to-speech, TTS)和语音转换(Voice Conversation,VC)等语音下游任务的性能。然而这些模型都没有公开的中文版本,不便于应用在中文语音研究场景。 WenetSpeech [4] 是

“Making large models smaller”这是很多语言模型研究人员的学术追求,针对大模型昂贵的环境和训练成本,陈丹琦在智源大会青源学术年会上做了题为“Making large models smaller”的特邀报告。报告中重点提及了基于记忆增强的TRIME算法和基于粗细粒度联合剪枝和逐层蒸馏的CofiPruning算法。前者能够在不改变模型结构的基础上兼顾语言模型困惑度和检索速度方面的优势;而后者可以在保证下游任务准确度的同时实现更快的处理速度,具有更小的模型结构。陈丹琦 普

由于复杂的注意力机制和模型设计,大多数现有的视觉 Transformer(ViT)在现实的工业部署场景中不能像卷积神经网络(CNN)那样高效地执行。这就带来了一个问题:视觉神经网络能否像 CNN 一样快速推断并像 ViT 一样强大?近期一些工作试图设计 CNN-Transformer 混合架构来解决这个问题,但这些工作的整体性能远不能令人满意。基于此,来自字节跳动的研究者提出了一种能在现实工业场景中有效部署的下一代视觉 Transformer——Next-ViT。从延迟 / 准确性权衡的角度看,

3月27号,Stability AI的创始人兼首席执行官Emad Mostaque在一条推文中宣布,Stable Diffusion XL 现已可用于公开测试。以下是一些事项:“XL”不是这个新的AI模型的官方名称。一旦发布稳定性AI公司的官方公告,名称将会更改。与先前版本相比,图像质量有所提高与先前版本相比,图像生成速度大大加快。示例图像让我们看看新旧AI模型在结果上的差异。Prompt: Luxury sports car with aerodynamic curves, shot in a

人工智能就是一个「拼财力」的行业,如果没有高性能计算设备,别说开发基础模型,就连微调模型都做不到。但如果只靠拼硬件,单靠当前计算性能的发展速度,迟早有一天无法满足日益膨胀的需求,所以还需要配套的软件来协调统筹计算能力,这时候就需要用到「智能计算」技术。最近,来自之江实验室、中国工程院、国防科技大学、浙江大学等多达十二个国内外研究机构共同发表了一篇论文,首次对智能计算领域进行了全面的调研,涵盖了理论基础、智能与计算的技术融合、重要应用、挑战和未来前景。论文链接:https://spj.scien

译者 | 李睿审校 | 孙淑娟近年来, Transformer 机器学习模型已经成为深度学习和深度神经网络技术进步的主要亮点之一。它主要用于自然语言处理中的高级应用。谷歌正在使用它来增强其搜索引擎结果。OpenAI 使用 Transformer 创建了著名的 GPT-2和 GPT-3模型。自从2017年首次亮相以来,Transformer 架构不断发展并扩展到多种不同的变体,从语言任务扩展到其他领域。它们已被用于时间序列预测。它们是 DeepMind 的蛋白质结构预测模型 AlphaFold

说起2010年南非世界杯的最大网红,一定非「章鱼保罗」莫属!这只位于德国海洋生物中心的神奇章鱼,不仅成功预测了德国队全部七场比赛的结果,还顺利地选出了最终的总冠军西班牙队。不幸的是,保罗已经永远地离开了我们,但它的「遗产」却在人们预测足球比赛结果的尝试中持续存在。在艾伦图灵研究所(The Alan Turing Institute),随着2022年卡塔尔世界杯的持续进行,三位研究员Nick Barlow、Jack Roberts和Ryan Chan决定用一种AI算法预测今年的冠军归属。预测模型图


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

SublimeText3 Linux new version
SublimeText3 Linux latest version

Notepad++7.3.1
Easy-to-use and free code editor
