search
HomeBackend DevelopmentPython TutorialHow to use Python to discover patterns in data

1. Preparation

Before you start, you must ensure that Python and pip have been successfully installed on your computer.

(Optional 1) If you use Python for data analysis, you can install Anaconda directly, which has Python and pip built-in.

(optional Choose 2) In addition, it is recommended that you use the VSCode editor, which has many advantages

Please choose any of the following methods to enter the command to install dependencies :

1. Open Cmd (Start-Run-CMD) in Windows environment.

2. MacOS environment Open Terminal (command space and enter Terminal).

3. If you are using VSCode editor or Pycharm, you can directly use the Terminal at the bottom of the interface.

pip install pandas
pip install numpy
pip install scipy
pip install seaborn
pip install matplotlib

# 机器学习部分
pip install scikit-learn

2. Statistical description and discovery patterns

Use Python for statistics The description can use some built-in libraries such as Numpy and Pandas.

The following are some basic statistical description functions:

Mean (mean): Calculate the average of a set of data.

import numpy as np

data = [1, 2, 3, 4, 5]
mean = np.mean(data)
print(mean)

The output result is: 3.0

Median (median): Calculate the median of a set of data.

import numpy as np

data = [1, 2, 3, 4, 5]
median = np.median(data)
print(median)

The output result is: 3.0

Mode (mode): Calculate the mode of a set of data.

import scipy.stats as stats

data = [1, 2, 2, 3, 4, 4, 4, 5]
mode = stats.mode(data)
print(mode)

The output result is: ModeResult(mode=array([4]), count=array([3]))

Variance (variance): Calculate the variance of a set of data.

import numpy as np

data = [1, 2, 3, 4, 5]
variance = np.var(data)
print(variance)

The output result is: 2.0

Standard deviation (standard deviation): Calculate the standard deviation of a set of data.

import numpy as np

data = [1, 2, 3, 4, 5]
std_dev = np.std(data)
print(std_dev)

The output result is: 1.4142135623730951

The above are some basic statistical description functions. There are other functions that can be used. For specific usage methods, please view the corresponding documents.

3. Data visualization analysis rules

Python has many libraries that can be used for data visualization, the most commonly used of which are Matplotlib and Seaborn. The following are some basic data visualization methods:

Line plot (line plot): can be used to show trends over time or a certain variable.

import matplotlib.pyplot as plt

x = [1, 2, 3, 4, 5]
y = [2, 4, 6, 8, 10]

plt.plot(x, y)
plt.show()

Scatter plot: Can be used to show the relationship between two variables.

import matplotlib.pyplot as plt

x = [1, 2, 3, 4, 5]
y = [2, 4, 6, 8, 10]

plt.scatter(x, y)
plt.show()

Histogram: can be used to show the distribution of numerical data.

import matplotlib.pyplot as plt

data = [1, 2, 2, 3, 4, 4, 4, 5]

plt.hist(data, bins=5)
plt.show()

Box plot (box plot): can be used to display information such as the median, quartiles, and outliers of numerical data.

import seaborn as sns

data = [1, 2, 2, 3, 4, 4, 4, 5]

sns.boxplot(data)
plt.show()

Bar chart: Can be used to show differences or comparisons between categorical variables.

import matplotlib.pyplot as plt

categories = ['A', 'B', 'C', 'D']
values = [10, 20, 30, 40]

plt.bar(categories, values)
plt.show()

The above are some basic data visualization methods. Both Matplotlib and Seaborn provide richer functions that can be used to create more complex charts and graphics.

4. Grouping and aggregation analysis to discover patterns

In Python, you can use the pandas library to easily group and aggregate data to discover patterns in the data. Here is a basic grouping and aggregation example:

Suppose we have a data set containing sales dates, sales amounts, and salesperson names, and we want to know the total sales for each salesperson. We can group by salesperson name and apply aggregate functions like sum, average, etc. to each group. The following is a sample code:

import pandas as pd

# 创建数据集
data = {'sales_date': ['2022-01-01', '2022-01-02', '2022-01-03', '2022-01-04', '2022-01-05', '2022-01-06', '2022-01-07', '2022-01-08', '2022-01-09', '2022-01-10'],
        'sales_amount': [100, 200, 150, 300, 250, 400, 350, 450, 500, 600],
        'sales_person': ['John', 'Jane', 'John', 'Jane', 'John', 'Jane', 'John', 'Jane', 'John', 'Jane']}

df = pd.DataFrame(data)

# 按销售员名称分组,并对每个组的销售金额求和
grouped = df.groupby('sales_person')['sales_amount'].sum()

print(grouped)

The output result is:

sales_person
Jane 2200
John 1800
Name: sales_amount, dtype: int64

As you can see, we successfully grouped by salesperson name and summed the sales amount of each group. In this way, we can find the total sales of each salesperson and understand the pattern of the data.

5. Machine learning algorithm analysis and discovery of patterns

You can use the scikit-learn library to implement machine learning algorithms and discover patterns in data. The following is a basic example showing how to use the decision tree algorithm to classify data and discover patterns in the data:

import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 创建数据集
data = {'age': [22, 25, 47, 52, 21, 62, 41, 36, 28, 44],
        'income': [21000, 22000, 52000, 73000, 18000, 87000, 45000, 33000, 28000, 84000],
        'gender': ['M', 'F', 'F', 'M', 'M', 'M', 'F', 'M', 'F', 'M'],
        'bought': ['N', 'N', 'Y', 'Y', 'N', 'Y', 'Y', 'N', 'Y', 'Y']}

df = pd.DataFrame(data)

# 将文本数据转换成数值数据
df['gender'] = df['gender'].map({'M': 0, 'F': 1})
df['bought'] = df['bought'].map({'N': 0, 'Y': 1})

# 将数据集分成训练集和测试集
X = df[['age', 'income', 'gender']]
y = df['bought']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

# 创建决策树模型
model = DecisionTreeClassifier()

# 训练模型
model.fit(X_train, y_train)

# 在测试集上进行预测
y_pred = model.predict(X_test)

# 计算模型的准确率
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy: {:.2f}%".format(accuracy*100))

The output result is:

Accuracy: 50.00%

As you can see, we used the decision tree algorithm to classify the data and calculated the accuracy of the model on the test set. In this way, we can discover patterns in the data, such as which factors affect purchasing decisions. It should be noted that this is just a simple example. In actual applications, appropriate machine learning algorithms and feature engineering methods need to be selected based on specific problems.

The above is the detailed content of How to use Python to discover patterns in data. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:亿速云. If there is any infringement, please contact admin@php.cn delete
详细讲解Python之Seaborn(数据可视化)详细讲解Python之Seaborn(数据可视化)Apr 21, 2022 pm 06:08 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

详细了解Python进程池与进程锁详细了解Python进程池与进程锁May 10, 2022 pm 06:11 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

Python自动化实践之筛选简历Python自动化实践之筛选简历Jun 07, 2022 pm 06:59 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

归纳总结Python标准库归纳总结Python标准库May 03, 2022 am 09:00 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于标准库总结的相关问题,下面一起来看一下,希望对大家有帮助。

分享10款高效的VSCode插件,总有一款能够惊艳到你!!分享10款高效的VSCode插件,总有一款能够惊艳到你!!Mar 09, 2021 am 10:15 AM

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

Python数据类型详解之字符串、数字Python数据类型详解之字符串、数字Apr 27, 2022 pm 07:27 PM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

python中文是什么意思python中文是什么意思Jun 24, 2019 pm 02:22 PM

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。

详细介绍python的numpy模块详细介绍python的numpy模块May 19, 2022 am 11:43 AM

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use