search
HomeBackend DevelopmentGolangHow to implement anti-proxy in golang

Golang is an efficient and concise programming language. Its powerful concurrency support and fast compilation speed make it widely respected in the field of network programming. A reverse proxy is a common network architecture that forwards requests to different servers to optimize network traffic and improve system performance. In this article, we will discuss how to implement reverse proxy using Golang.

  1. What is a reverse proxy?

A reverse proxy is a network architecture that forwards client requests to a backend server and then returns the response to the client. Unlike a forward proxy, a reverse proxy hides the identity of the backend server and provides some additional services to the client, such as load balancing, caching, and security enhancements.

The core of reverse proxy is load balancing. When a client initiates a request to the reverse proxy, the reverse proxy distributes the request to the most appropriate backend server to maximize network efficiency and performance. In addition, reverse proxies can reduce server load through caching and can provide features such as SSL termination and firewalls to enhance network security.

  1. Using Golang to implement reverse proxy

It is very simple to implement reverse proxy using Golang. Golang provides a standard library "net/http/httputil", which contains some useful functions and structures that can easily implement reverse proxy.

The following is a simple Golang reverse proxy example:

package main

import (
    "fmt"
    "log"
    "net/http"
    "net/http/httputil"
)

func main() {
    proxy := httputil.NewSingleHostReverseProxy(&url.URL{
        Scheme: "http",
        Host:   "localhost:8080",
    })
    http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
        proxy.ServeHTTP(w, r)
    })
    log.Fatal(http.ListenAndServe(":3000", nil))
}

In this example, we use the httputil.NewSingleHostReverseProxy function to create a reverse proxy object and forward the request to the port of the local host 8080. We then use the http.HandleFunc function to associate the handler function with the "/" path and start the reverse proxy on the local server at port 3000.

  1. Advanced configuration of reverse proxy

The reverse proxy created by the above code is very simple, but in actual applications, we may need more advanced configuration to satisfy specific needs. Here are some examples of advanced configurations for reverse proxies:

  • Load Balancing

Load balancing is one of the core functions of a reverse proxy. Golang provides some algorithms to evenly distribute requests among multiple backend servers. Here is a simple load balancing example:

package main

import (
    "fmt"
    "log"
    "net/http"
    "net/http/httputil"
    "net/url"
)

func main() {
    backends := []*url.URL{
        &url.URL{
            Scheme: "http",
            Host:   "localhost:8080",
        },
        &url.URL{
            Scheme: "http",
            Host:   "localhost:8081",
        },
        &url.URL{
            Scheme: "http",
            Host:   "localhost:8082",
        },
    }

    proxy := httputil.NewSingleHostReverseProxy(backends[0])
    proxy.Transport = &http.Transport{
        Dial: func(network, address string) (net.Conn, error) {
            return net.DialTimeout(network, address, time.Second)
        },
        MaxIdleConns:        10,
        IdleConnTimeout:     30 * time.Second,
        DisableCompression:  true,
    }

    proxy.ModifyResponse = func(r *http.Response) error {
        r.Header.Set("X-Proxy", "Golang Reverse Proxy")
        return nil
    }

    http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
        i := rand.Intn(len(backends))
        proxy.URL = backends[i]
        proxy.ServeHTTP(w, r)
    })

    log.Fatal(http.ListenAndServe(":3000", nil))
}

In this example, we use a backends array containing three backend servers and randomly select one when a request arrives. We also set up a ModifyResponse function that adds an "X-Proxy" header to the response headers, and used a custom httputil.ReverseProxy.Transport field to allow for custom network connection properties. Finally, we have the reverse proxy server listening on local port 3000.

  • SSL Termination

SSL termination is a technology that can improve website performance and security. A reverse proxy can serve as an SSL termination point, accepting SSL requests from clients and forwarding unencrypted HTTP requests to the backend server. If your application uses SSL encryption, this technology can be a great way to reduce the load on the server. Here is a simple SSL termination example:

package main

import (
    "crypto/tls"
    "crypto/x509"
    "fmt"
    "io/ioutil"
    "log"
    "net/http"
    "net/http/httputil"
    "net/url"
)

func main() {
    cert, err := tls.LoadX509KeyPair("cert.pem", "key.pem")
    if err != nil {
        log.Fatalf("Failed to load keypair: %s", err)
    }

    certBytes, err := ioutil.ReadFile("cert.pem")
    if err != nil {
        log.Fatalf("Failed to read cert file: %s", err)
    }

    rootCAs := x509.NewCertPool()
    ok := rootCAs.AppendCertsFromPEM(certBytes)
    if !ok {
        log.Fatal("Failed to append root CA")
    }

    proxy := httputil.NewSingleHostReverseProxy(&url.URL{
        Scheme: "http",
        Host:   "localhost:8080",
    })
    proxy.Transport = &http.Transport{
        TLSClientConfig: &tls.Config{
            Certificates:       []tls.Certificate{cert},
            RootCAs:            rootCAs,
            InsecureSkipVerify: true,
        },
    }

    http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
        proxy.ServeHTTP(w, r)
    })

    log.Fatal(http.ListenAndServeTLS(":3000", "cert.pem", "key.pem", nil))
}

In this example, we use the tls.LoadX509KeyPair function to load the TLS certificate and private key from the file system, and use the x509.NewCertPool function to build a root certificate pool . We then assign the loaded certificate and root certificate pool to the httputil.ReverseProxy.Transport.TLSClientConfig field to ensure a secure connection to the client. Additionally, we use the http.ListenAndServeTLS function in order to support HTTPS connections.

  • Caching

Caching is a technology that can significantly improve reverse proxy performance. A reverse proxy can cache front-end static resources, thereby reducing pressure on the server. The following is a simple caching example:

package main

import (
    "bytes"
    "fmt"
    "log"
    "net/http"
    "net/http/httputil"
    "net/url"
    "time"
)

var cache = make(map[string]*bytes.Buffer)

func main() {
    proxy := httputil.NewSingleHostReverseProxy(&url.URL{
        Scheme: "http",
        Host:   "localhost:8080",
    })

    http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {
        if r.Method == "GET" {
            if buf, ok := cache[r.URL.Path]; ok {
                w.Write(buf.Bytes())
                return
            }
        }

        if r.Method == "POST" || r.Method == "PUT" || r.Method == "DELETE" {
            delete(cache, r.URL.Path)
        }

        proxy.ServeHTTP(w, r)

        if r.Method == "GET" && r.Header.Get("Cache-Control") != "no-cache" {
            buf := bytes.NewBuffer(nil)
            buf.ReadFrom(w.(http.ResponseWriter))
            cache[r.URL.Path] = buf
        }
    })

    log.Fatal(http.ListenAndServe(":3000", nil))
}

In this example, we use a map variable cache to store cached response results. When the corresponding resource exists in the cache, we can directly return the result to the client without requesting the backend server. And we use the underlying type *bytes.Buffer of the http.ResponseWriter interface to cache the response results. Additionally, when the request method is POST, PUT, or DELETE, we delete the cache so that the updated data is fetched from the backend server. Finally, we handle whether we need to cache the response result by checking the "Cache-Control" field in the request header.

  1. Conclusion

Reverse proxy is a powerful network architecture that can significantly improve system performance and security by hiding the backend server and providing various additional services. sex. It is very simple to implement a reverse proxy using Golang. Golang provides many useful functions and structures to easily create a reverse proxy server. In this article, we introduced the basic concepts of reverse proxies and showed how to implement different configurations of advanced reverse proxies using Golang.

The above is the detailed content of How to implement anti-proxy in golang. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Interfaces and Polymorphism in Go: Achieving Code ReusabilityInterfaces and Polymorphism in Go: Achieving Code ReusabilityApr 29, 2025 am 12:31 AM

InterfacesandpolymorphisminGoenhancecodereusabilityandmaintainability.1)Defineinterfacesattherightabstractionlevel.2)Useinterfacesfordependencyinjection.3)Profilecodetomanageperformanceimpacts.

How do you iterate through a map in Go?How do you iterate through a map in Go?Apr 28, 2025 pm 05:15 PM

Article discusses iterating through maps in Go, focusing on safe practices, modifying entries, and performance considerations for large maps.Main issue: Ensuring safe and efficient map iteration in Go, especially in concurrent environments and with l

How do you create a map in Go?How do you create a map in Go?Apr 28, 2025 pm 05:14 PM

The article discusses creating and manipulating maps in Go, including initialization methods and adding/updating elements.

What is the difference between an array and a slice in Go?What is the difference between an array and a slice in Go?Apr 28, 2025 pm 05:13 PM

The article discusses differences between arrays and slices in Go, focusing on size, memory allocation, function passing, and usage scenarios. Arrays are fixed-size, stack-allocated, while slices are dynamic, often heap-allocated, and more flexible.

How do you create a slice in Go?How do you create a slice in Go?Apr 28, 2025 pm 05:12 PM

The article discusses creating and initializing slices in Go, including using literals, the make function, and slicing existing arrays or slices. It also covers slice syntax and determining slice length and capacity.

How do you create an array in Go?How do you create an array in Go?Apr 28, 2025 pm 05:11 PM

The article explains how to create and initialize arrays in Go, discusses the differences between arrays and slices, and addresses the maximum size limit for arrays. Arrays vs. slices: fixed vs. dynamic, value vs. reference types.

What is the syntax for creating a struct in Go?What is the syntax for creating a struct in Go?Apr 28, 2025 pm 05:10 PM

Article discusses syntax and initialization of structs in Go, including field naming rules and struct embedding. Main issue: how to effectively use structs in Go programming.(Characters: 159)

How do you create a pointer in Go?How do you create a pointer in Go?Apr 28, 2025 pm 05:09 PM

The article explains creating and using pointers in Go, discussing benefits like efficient memory use and safe management practices. Main issue: safe pointer use.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.