search
HomeBackend DevelopmentPython TutorialHow do generators in Python work?

What is a python generator

The generator is a special iterator. It also has the __iter__ method and the __next__ method inside it. When terminating the generator Sometimes, the StopIteration exception will still be thrown to exit the loop, but compared to the iterator, the generator also has the feature of saving the "intermediate value". The next time it runs, it will also use this " Intermediate value" to operate. The keyword of the generator is yield. Let’s write the simplest generator below.

#!/usr/bin/env python

def printNums():
    i = 0
    while i<10:
        yield i
        i = i + 1


def main():
    for i in printNums():
        print(i)

if __name__ == &#39;__main__&#39;:
    main()

If you look at the code at a glance, you may wonder what this is. Why don’t you just use range to generate it instead of using yield? Oh, don’t worry. , let’s go on to see why a generator is needed, or what problem the generator solves.

Why python generator is needed

Before explaining this problem, let’s first write a requirement to output data within 0-10000000, and then run to view the screenshot of the exported memory operation.

Auxiliary instructions for calling python program memory information

Here you can use the memory_profiler module of python to detect the occupancy of program memory.

Installationmemory_profilerLibrary:

pip3 install memory_profiler

The method of use is very simple. Just add the @profile decorator before the function or code that needs to be detected. , for example:

@profile
def main():
    pass

Generate .dat file

mprof run

Export icon, you can use

mprof plot --output=filename

python case code

The following two programs both output data between 0-9999999. The difference is that the first program uses range and then append into list, while the second one uses an iterator to generate the data.

main.pyProgram

@profile
def main():
    data = list(range(10000000))
    for i in data:
        pass

if __name__ == &#39;__main__&#39;:
    main()

main_2.pyProgram

def printNum():
    i = 0 
    while i < 10000000:
        yield i
        i = i + 1

@profile
def main():
    for i in printNum():
        pass

if __name__ == &#39;__main__&#39;:
    main()

Running program

The code is also there Now, you can run the program as above and export the memory information

How do generators in Python work?

View the memory information after running

main.py Running memory graph

How do generators in Python work?

main_2.py Running memory graph

How do generators in Python work?

Comparison of the above 2 pictures , when we superimpose the data into the list and then output it, it takes up nearly 400M of memory, while using an iterator to calculate the next value only uses 16M of memory.

Through the above cases, we should know why we should use generators.

Python generator principle

Since the generator expression yield statement involves the internal mechanism of python interpretation rights, it is difficult to view its source code. It is difficult to obtain its principle, but we can use the pause mechanism of yield to explore the generator.

You can write the following code:

def testGenerator():
    print("进入生成器")
    yield "pdudo"
    print("第一次输出")
    yield "juejin"
    print("第二次输出")

def main():
    xx = testGenerator()
    print(next(xx))
    print(next(xx))

if __name__ == &#39;__main__&#39;:
    main()

The effect after operation is as follows

How do generators in Python work?

Through the above example, combined with the operation of the following generator The process will deepen the feeling of the generator.

When python encounters the yield statement, the running status of the current function will be recorded, execution will be suspended, and the result will be thrown. It will continue to wait for the next call to the __next__ method. After this method is called, the function will resume running until the next yield statement or the end of the function. There will be no yield# at the end of the execution. ##When the function is executable, StopIteration will be thrown to mark the end of the generator.

Generator expression

In

python, in addition to being written in a function and returned using yield, the generator can also be used directly Generator expressions, eh. . . It may be abstract, but if you look at the code below, you'll understand.

def printNums():
    for i in [1,2,3,4,5]:
        yield i

def main():
    for i in printNums():
        print(i)

    gener = (i for i in [1,2,3,4,5])
    for i in gener:
        print(i)

if __name__ == &#39;__main__&#39;:
    main()

Among them, the code

(i for i in [1,2,3,4,5]) is equivalent to the printNums function, and its types are generated Container, we can use type to print it out and take a look.

Change the code and the output will be as follows:

How do generators in Python work?

The above is the detailed content of How do generators in Python work?. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:亿速云. If there is any infringement, please contact admin@php.cn delete
The Main Purpose of Python: Flexibility and Ease of UseThe Main Purpose of Python: Flexibility and Ease of UseApr 17, 2025 am 12:14 AM

Python's flexibility is reflected in multi-paradigm support and dynamic type systems, while ease of use comes from a simple syntax and rich standard library. 1. Flexibility: Supports object-oriented, functional and procedural programming, and dynamic type systems improve development efficiency. 2. Ease of use: The grammar is close to natural language, the standard library covers a wide range of functions, and simplifies the development process.

Python: The Power of Versatile ProgrammingPython: The Power of Versatile ProgrammingApr 17, 2025 am 12:09 AM

Python is highly favored for its simplicity and power, suitable for all needs from beginners to advanced developers. Its versatility is reflected in: 1) Easy to learn and use, simple syntax; 2) Rich libraries and frameworks, such as NumPy, Pandas, etc.; 3) Cross-platform support, which can be run on a variety of operating systems; 4) Suitable for scripting and automation tasks to improve work efficiency.

Learning Python in 2 Hours a Day: A Practical GuideLearning Python in 2 Hours a Day: A Practical GuideApr 17, 2025 am 12:05 AM

Yes, learn Python in two hours a day. 1. Develop a reasonable study plan, 2. Select the right learning resources, 3. Consolidate the knowledge learned through practice. These steps can help you master Python in a short time.

Python vs. C  : Pros and Cons for DevelopersPython vs. C : Pros and Cons for DevelopersApr 17, 2025 am 12:04 AM

Python is suitable for rapid development and data processing, while C is suitable for high performance and underlying control. 1) Python is easy to use, with concise syntax, and is suitable for data science and web development. 2) C has high performance and accurate control, and is often used in gaming and system programming.

Python: Time Commitment and Learning PacePython: Time Commitment and Learning PaceApr 17, 2025 am 12:03 AM

The time required to learn Python varies from person to person, mainly influenced by previous programming experience, learning motivation, learning resources and methods, and learning rhythm. Set realistic learning goals and learn best through practical projects.

Python: Automation, Scripting, and Task ManagementPython: Automation, Scripting, and Task ManagementApr 16, 2025 am 12:14 AM

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Python and Time: Making the Most of Your Study TimePython and Time: Making the Most of Your Study TimeApr 14, 2025 am 12:02 AM

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python: Games, GUIs, and MorePython: Games, GUIs, and MoreApr 13, 2025 am 12:14 AM

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Chat Commands and How to Use Them
1 months agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft