search
HomeTechnology peripheralsAIOverview of the current status of federated learning technology and its applications in image processing

In recent years, graphs have been widely used to represent and process complex data in many fields, such as medical care, transportation, bioinformatics, and recommendation systems. Graph machine learning technology is a powerful tool for obtaining rich information hidden in complex data, and has demonstrated strong performance in tasks such as node classification and link prediction.

Although graph machine learning technology has made significant progress, most of them require graph data to be stored centrally on a single machine. However, with the emphasis on data security and user privacy, centralized storage of data has become unsafe and unfeasible. Graph data is often distributed across multiple data sources (data silos), and due to privacy and security reasons, it becomes infeasible to collect the required graph data from different places.

For example, a third-party company wants to train graph machine learning models for some financial institutions to help them detect potential financial crimes and fraudulent customers. Every financial institution holds private customer data, such as demographic data and transaction records. The customers of each financial institution form a customer graph, where edges represent transaction records. Due to strict privacy policies and business competition, each organization's private customer data cannot be shared directly with third-party companies or other organizations. At the same time, there may also be relationships between institutions, which can be regarded as structural information between institutions. The main challenge is therefore to train graph machine learning models for financial crime detection based on private customer graphs and inter-agency structural information without direct access to each institution's private customer data.

Federated learning (FL) is a distributed machine learning solution that solves the problem of data islands through collaborative training. It enables participants (i.e. customers) to jointly train machine learning models without sharing their private data. Therefore, combining FL with graph machine learning becomes a promising solution to the above problems.

In this article, researchers from the University of Virginia propose Federated Graph Machine Learning (FGML). Generally speaking, FGML can be divided into two settings based on the level of structural information: the first is FL with structured data. In FL with structured data, customers collaboratively train graph machine learning models based on their graph data, while Keep graph data locally. The second type is structured FL. In structured FL, there is structural information between clients, forming a client graph. Client graphs can be exploited to design more efficient joint optimization methods.

Overview of the current status of federated learning technology and its applications in image processing

Paper address: https://arxiv.org/pdf/2207.11812.pdf

Although FGML provides a promising blueprint, there are still some challenges:

1. Lack of information across clients. In FL with structured data, a common scenario is that each client machine has a subgraph of the global graph, and some nodes may have close neighbors belonging to other clients. For privacy reasons, nodes can only aggregate features of their immediate neighbors within the client, but cannot access features located on other clients, which leads to under-representation of nodes.

2. Privacy leakage of graph structure. In traditional FL, clients are not allowed to expose the features and labels of their data samples. In FL with structured data, the privacy of structural information should also be considered. Structural information can be exposed directly through a shared adjacency matrix or indirectly through transmission node embedding.

3. Cross-client data heterogeneity. Unlike traditional FL where data heterogeneity comes from non-IID data samples, graph data in FGML contains rich structural information. At the same time, the graph structure of different customers will also affect the performance of the graph machine learning model.

4. Parameter usage strategy. In structured FL, the client graph enables clients to obtain information from their neighboring clients. In structured FL, effective strategies need to be designed to fully exploit neighbor information that is coordinated by a central server or completely decentralized.

To address the above challenges, researchers have developed a large number of algorithms. Various algorithms currently focus mainly on challenges and methods in standard FL, with only a few attempts to address specific problems and techniques in FGML. Someone published a review paper classifying FGML, but did not summarize the main techniques in FGML. Some review articles only cover a limited number of relevant papers in FL and very briefly introduce the current technology.

Overview of the current status of federated learning technology and its applications in image processing

In the paper introduced today, the author first introduces the concepts of two problem designs in FGML. Then, the latest technological progress under each shezhi is reviewed, and the practical applications of FGML are also introduced. and summarizes accessible graph datasets and platforms available for FGML applications. Finally, the author gives several promising research directions. The main contributions of the article include:

Taxonomy of FGML technologies: The article presents a taxonomy of FGML based on different problems and summarizes the key challenges in each setting.

Comprehensive Technology Review: The article provides a comprehensive overview of existing technology in FGML. Compared with other existing review papers, the authors not only study a wider range of related work, but also provide a more detailed technical analysis instead of simply listing the steps of each method.

Practical application: This article summarizes the practical application of FGML for the first time. The authors classify them according to application areas and introduce related work in each area.

Datasets and Platforms: The article introduces existing datasets and platforms in FGML, which is very helpful for engineers and researchers who want to develop algorithms and deploy applications in FGML.

Future directions: The article not only points out the limitations of existing methods, but also gives the future development direction of FGML.

Overview of the current status of federated learning technology and its applications in image processing

FGML Technical Overview Here is the main structure of the article Introduction.

Section 2 briefly introduces definitions in graph machine learning and concepts and challenges in both settings in FGML.

Sections 3 and 4 review the dominant techniques in both settings. Section 5 further explores real-world applications of FGML. Section 6 introduces the Open Graph Dataset and two platforms for FGML used in related FGML papers. Possible future directions are provided in Section 7 .

Finally Section 8 summarizes the full text. Please refer to the original paper for more details.


The above is the detailed content of Overview of the current status of federated learning technology and its applications in image processing. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
[Ghibli-style images with AI] Introducing how to create free images with ChatGPT and copyright[Ghibli-style images with AI] Introducing how to create free images with ChatGPT and copyrightMay 13, 2025 am 01:57 AM

The latest model GPT-4o released by OpenAI not only can generate text, but also has image generation functions, which has attracted widespread attention. The most eye-catching feature is the generation of "Ghibli-style illustrations". Simply upload the photo to ChatGPT and give simple instructions to generate a dreamy image like a work in Studio Ghibli. This article will explain in detail the actual operation process, the effect experience, as well as the errors and copyright issues that need to be paid attention to. For details of the latest model "o3" released by OpenAI, please click here⬇️ Detailed explanation of OpenAI o3 (ChatGPT o3): Features, pricing system and o4-mini introduction Please click here for the English version of Ghibli-style article⬇️ Create Ji with ChatGPT

Explaining examples of use and implementation of ChatGPT in local governments! Also introduces banned local governmentsExplaining examples of use and implementation of ChatGPT in local governments! Also introduces banned local governmentsMay 13, 2025 am 01:53 AM

As a new communication method, the use and introduction of ChatGPT in local governments is attracting attention. While this trend is progressing in a wide range of areas, some local governments have declined to use ChatGPT. In this article, we will introduce examples of ChatGPT implementation in local governments. We will explore how we are achieving quality and efficiency improvements in local government services through a variety of reform examples, including supporting document creation and dialogue with citizens. Not only local government officials who aim to reduce staff workload and improve convenience for citizens, but also all interested in advanced use cases.

What is the Fukatsu-style prompt in ChatGPT? A thorough explanation with example sentences!What is the Fukatsu-style prompt in ChatGPT? A thorough explanation with example sentences!May 13, 2025 am 01:52 AM

Have you heard of a framework called the "Fukatsu Prompt System"? Language models such as ChatGPT are extremely excellent, but appropriate prompts are essential to maximize their potential. Fukatsu prompts are one of the most popular prompt techniques designed to improve output accuracy. This article explains the principles and characteristics of Fukatsu-style prompts, including specific usage methods and examples. Furthermore, we have introduced other well-known prompt templates and useful techniques for prompt design, so based on these, we will introduce C.

What is ChatGPT Search? Explains the main functions, usage, and fee structure!What is ChatGPT Search? Explains the main functions, usage, and fee structure!May 13, 2025 am 01:51 AM

ChatGPT Search: Get the latest information efficiently with an innovative AI search engine! In this article, we will thoroughly explain the new ChatGPT feature "ChatGPT Search," provided by OpenAI. Let's take a closer look at the features, usage, and how this tool can help you improve your information collection efficiency with reliable answers based on real-time web information and intuitive ease of use. ChatGPT Search provides a conversational interactive search experience that answers user questions in a comfortable, hidden environment that hides advertisements

An easy-to-understand explanation of how to create a composition in ChatGPT and prompts!An easy-to-understand explanation of how to create a composition in ChatGPT and prompts!May 13, 2025 am 01:50 AM

In a modern society with information explosion, it is not easy to create compelling articles. How to use creativity to write articles that attract readers within a limited time and energy requires superb skills and rich experience. At this time, as a revolutionary writing aid, ChatGPT attracted much attention. ChatGPT uses huge data to train language generation models to generate natural, smooth and refined articles. This article will introduce how to effectively use ChatGPT and efficiently create high-quality articles. We will gradually explain the writing process of using ChatGPT, and combine specific cases to elaborate on its advantages and disadvantages, applicable scenarios, and safe use precautions. ChatGPT will be a writer to overcome various obstacles,

How to create diagrams using ChatGPT! Illustrated loading and plugins are also explainedHow to create diagrams using ChatGPT! Illustrated loading and plugins are also explainedMay 13, 2025 am 01:49 AM

An efficient guide to creating charts using AI Visual materials are essential to effectively conveying information, but creating it takes a lot of time and effort. However, the chart creation process is changing dramatically due to the rise of AI technologies such as ChatGPT and DALL-E 3. This article provides detailed explanations on efficient and attractive diagram creation methods using these cutting-edge tools. It covers everything from ideas to completion, and includes a wealth of information useful for creating diagrams, from specific steps, tips, plugins and APIs that can be used, and how to use the image generation AI "DALL-E 3."

An easy-to-understand explanation of ChatGPT Plus' pricing structure and payment methods!An easy-to-understand explanation of ChatGPT Plus' pricing structure and payment methods!May 13, 2025 am 01:48 AM

Unlock ChatGPT Plus: Fees, Payment Methods and Upgrade Guide ChatGPT, a world-renowned generative AI, has been widely used in daily life and business fields. Although ChatGPT is basically free, the paid version of ChatGPT Plus provides a variety of value-added services, such as plug-ins, image recognition, etc., which significantly improves work efficiency. This article will explain in detail the charging standards, payment methods and upgrade processes of ChatGPT Plus. For details of OpenAI's latest image generation technology "GPT-4o image generation" please click: Detailed explanation of GPT-4o image generation: usage methods, prompt word examples, commercial applications and differences from other AIs Table of contents ChatGPT Plus Fees Ch

Explaining how to create a design using ChatGPT! We also introduce examples of use and promptsExplaining how to create a design using ChatGPT! We also introduce examples of use and promptsMay 13, 2025 am 01:47 AM

How to use ChatGPT to streamline your design work and increase creativity This article will explain in detail how to create a design using ChatGPT. We will introduce examples of using ChatGPT in various design fields, such as ideas, text generation, and web design. We will also introduce points that will help you improve the efficiency and quality of a variety of creative work, such as graphic design, illustration, and logo design. Please take a look at how AI can greatly expand your design possibilities. table of contents ChatGPT: A powerful tool for design creation

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor