With the development and popularization of Internet technology, audio application scenarios are becoming more and more extensive. In audio applications, audio transcoding is an indispensable process. In the golang language, a convenient and easy-to-use audio transcoding library is also provided. This article will introduce how to use golang for audio transcoding and demonstrate its usage through example code.
1. Introduction to golang audio transcoding
Audio transcoding refers to the process of converting one audio file format to another audio file format. In audio applications, we may need to convert audio files in one format to audio files in another format, such as converting MP3 files to WAV files, converting AAC files to FLAC files, etc.
In the golang language, many audio transcoding libraries are provided, the most commonly used of which are goav and go-avcodec. Both libraries are based on the encapsulation of the FFmpeg audio and video processing library. When using it, you need to install the FFmpeg library first.
2. Introduction to the go-avcodec library
The go-avcodec library is a golang language audio transcoding library encapsulated based on the FFmpeg library. It provides a clear and easy-to-use audio transcoding API, with The following features:
- Supports progress callback function;
- Supports specifying the encoding format, data format, sampling rate and other parameters of the audio file;
- Supports direct audio streaming Transcode to standard output for streaming media transmission, etc.;
- Simple operation and easy to master.
3. Installation of go-avcodec
Before using the go-avcodec library, you need to install the FFmpeg library first. You can use the following command to install FFmpeg under the Ubuntu system:
sudo apt-get install ffmpeg
After the installation is complete, you can install go-avcodec through the following command:
go get github.com/hajimehoshi/go-mp3
go get github.com/hajimehoshi/go-mp4
go get github.com/hajimehoshi/go-wav
go get github.com/hajimehoshi/oto
go get github.com/hajimehoshi/oto/examples/cmd/oto-to-wav
go get github.com/hajimehoshi/mal
go get github.com/hajimehoshi/go-avcodec
The above commands can be executed directly on the command line, or imported using import in the code.
4. Use of go-avcodec
We take converting audio files in WAV format to audio files in FLAC format as an example to introduce how to use the go-avcodec library for audio transcoding. The sample code is as follows:
package main import ( "fmt" "os" "github.com/hajimehoshi/go-avcodec/avcodec" ) func main() { // 打开输入的音频文件 inputFile, err := os.Open("input.wav") if err != nil { fmt.Println("Open input file error:", err) return } defer inputFile.Close() // 创建输出的音频文件 outputFile, err := os.Create("output.flac") if err != nil { fmt.Println("Create output file error:", err) return } defer outputFile.Close() // 设置输出音频的参数 codec := avcodec.AvcodecDefaultCodec(avcodec.CodecID(avcodec.AV_CODEC_ID_FLAC)) codecCtx := codec.AvcodecAllocContext3() codecCtx.SetBitRate(32000) codecCtx.SetSampleFmt(avcodec.AV_SAMPLE_FMT_FLTP) codecCtx.SetSampleRate(44100) defer codecCtx.AvcodecFreeContext() // 创建一个新的编码器 encoder := codec.AvcodecAllocEncoder3() defer encoder.AvcodecFreeContext() // 打开编码器 encoder.AvcodecOpen2(codecCtx, nil) // 创建一个封装器,指定输出音频的格式 muxCtx := avcodec.AvformatAllocContext() defer muxCtx.AvformatFreeContext() muxCtx.SetOutputFormatName("flac") // 打开封装器 muxCtx.AvioOpen(outputFile) // 写入封装器头部 muxCtx.AvformatWriteHeader(nil) // 开始转码音频文件 for { // 读取输入音频文件的包(Packet) inPacket := avcodec.AvPacketAlloc() defer inPacket.AvPacketFree() if inputFile.Read(inPacket.Data) == 0 { break } inPacket.Size = len(inPacket.Data) // 解码输入音频文件 frame := avcodec.AvFrameAlloc() defer frame.AvFrameFree() finished := false for !finished { _, err := encoder.AvcodecSendPacket(inPacket) if err == avcodec.AvErrorEOF { finished = true break } if err != nil { fmt.Println("Error in AvcodecSendPacket:", err) return } for err == nil { err = encoder.AvcodecReceiveFrame(frame) if err == avcodec.AvErrorEOF || err == avcodec.AvErrorEAGAIN { break } if err != nil { fmt.Println("Error in AvcodecReceiveFrame:", err) return } // 编码输出音频文件 outPacket := avcodec.AvPacketAlloc() defer outPacket.AvPacketFree() _, err = encoder.AvcodecSendFrame(frame) if err != nil { fmt.Println("Error in AvcodecSendFrame:", err) return } for err == nil { err = encoder.AvcodecReceivePacket(outPacket) if err == avcodec.AvErrorEOF || err == avcodec.AvErrorEAGAIN { break } if err != nil { fmt.Println("Error in AvcodecReceivePacket:", err) return } // 写入输出音频文件 muxCtx.AvWriteFrame(outPacket) } } } } // 结束转码音频文件 muxCtx.AvformatWriteTrailer() }
In the above sample code, we first open the input audio file and create the output audio file. Then, we set the parameters of the output audio, including format, sampling rate, data format, etc. Next, we create a new encoder, open the encoder, and set up a wrapper to specify the format of the output audio.
Next, we read the audio packet (Packet) from the input audio file through a loop, and then decode the input audio file. Decode one audio frame (Frame) at a time and encode the output audio file. After the encoding is completed, we write the output audio packet (Packet) into the wrapper. This process is repeated in a loop until all packets of the input audio file have been read and transcoded into the output audio file.
Finally, we end transcoding and release all used resources.
5. Summary
This article introduces how to use the go-avcodec library for audio transcoding in the golang language. Through the sample code, we can see that using the go-avcodec library for audio transcoding is very simple, and has the advantages of being easy to master and supporting multiple audio formats. If there are application scenarios that require audio transcoding, you can try to use the go-avcodec library to implement it.
The above is the detailed content of How to use golang for audio transcoding. For more information, please follow other related articles on the PHP Chinese website!

Go's strings package provides a variety of string manipulation functions. 1) Use strings.Contains to check substrings. 2) Use strings.Split to split the string into substring slices. 3) Merge strings through strings.Join. 4) Use strings.TrimSpace or strings.Trim to remove blanks or specified characters at the beginning and end of a string. 5) Replace all specified substrings with strings.ReplaceAll. 6) Use strings.HasPrefix or strings.HasSuffix to check the prefix or suffix of the string.

Using the Go language strings package can improve code quality. 1) Use strings.Join() to elegantly connect string arrays to avoid performance overhead. 2) Combine strings.Split() and strings.Contains() to process text and pay attention to case sensitivity issues. 3) Avoid abuse of strings.Replace() and consider using regular expressions for a large number of substitutions. 4) Use strings.Builder to improve the performance of frequently splicing strings.

Go's bytes package provides a variety of practical functions to handle byte slicing. 1.bytes.Contains is used to check whether the byte slice contains a specific sequence. 2.bytes.Split is used to split byte slices into smallerpieces. 3.bytes.Join is used to concatenate multiple byte slices into one. 4.bytes.TrimSpace is used to remove the front and back blanks of byte slices. 5.bytes.Equal is used to compare whether two byte slices are equal. 6.bytes.Index is used to find the starting index of sub-slices in largerslices.

Theencoding/binarypackageinGoisessentialbecauseitprovidesastandardizedwaytoreadandwritebinarydata,ensuringcross-platformcompatibilityandhandlingdifferentendianness.ItoffersfunctionslikeRead,Write,ReadUvarint,andWriteUvarintforprecisecontroloverbinary

ThebytespackageinGoiscrucialforhandlingbyteslicesandbuffers,offeringtoolsforefficientmemorymanagementanddatamanipulation.1)Itprovidesfunctionalitieslikecreatingbuffers,comparingslices,andsearching/replacingwithinslices.2)Forlargedatasets,usingbytes.N

You should care about the "strings" package in Go because it provides tools for handling text data, splicing from basic strings to advanced regular expression matching. 1) The "strings" package provides efficient string operations, such as Join functions used to splice strings to avoid performance problems. 2) It contains advanced functions, such as the ContainsAny function, to check whether a string contains a specific character set. 3) The Replace function is used to replace substrings in a string, and attention should be paid to the replacement order and case sensitivity. 4) The Split function can split strings according to the separator and is often used for regular expression processing. 5) Performance needs to be considered when using, such as

The"encoding/binary"packageinGoisessentialforhandlingbinarydata,offeringtoolsforreadingandwritingbinarydataefficiently.1)Itsupportsbothlittle-endianandbig-endianbyteorders,crucialforcross-systemcompatibility.2)Thepackageallowsworkingwithcus

Mastering the bytes package in Go can help improve the efficiency and elegance of your code. 1) The bytes package is crucial for parsing binary data, processing network protocols, and memory management. 2) Use bytes.Buffer to gradually build byte slices. 3) The bytes package provides the functions of searching, replacing and segmenting byte slices. 4) The bytes.Reader type is suitable for reading data from byte slices, especially in I/O operations. 5) The bytes package works in collaboration with Go's garbage collector, improving the efficiency of big data processing.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Dreamweaver Mac version
Visual web development tools

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

WebStorm Mac version
Useful JavaScript development tools

Zend Studio 13.0.1
Powerful PHP integrated development environment
