Reversing a linked list is a common question and is often mentioned in programming interviews. It is a classic algorithmic problem that is widely used and can be used to quickly reverse the order of a linked list. This article will introduce the algorithm and steps to implement a reverse linked list using golang language.
- Define a singly linked list node
Before we start to implement the reverse linked list, we need to first define a singly linked list node. A node contains two very important parts: data field and pointer field. The data field is used to store the value of the node, and the pointer field is used to point to the next node.
In golang, we can use the struct structure to define a singly linked list node. The structure contains two attributes: Val, used to represent the value of the current node, and Next, used to represent the pointer to the next node.
type ListNode struct {
Val int Next *ListNode
}
- Singly linked list inversion
Now we have defined the nodes of the singly linked list, The next step is to implement the algorithm for inverting the linked list. The key to reversing a linked list is to traverse the linked list and change the pointer to each node.
We can traverse each node in the linked list from the beginning, and change their "Next" pointers in turn to point to the previous node. In this way, the linked list can be reversed.
The algorithm steps for reversing the linked list are as follows:
(1) Define two pointers: pre and cur, pointing to the first node and the second node respectively. pre is the previous node and cur is the current node.
(2) Traverse the linked list and point the Next pointer of the current node to the previous node pre.
(3) Move the pointer backward, point pre to the current node, and cur to the next node.
(4) Repeat steps 2 and 3 until the entire linked list is traversed.
The implementation code is as follows:
func reverseLinkedList(head ListNode) ListNode {
var pre *ListNode cur := head for cur != nil { next := cur.Next cur.Next = pre pre = cur cur = next } return pre
}
- Reverse linked list Test code
In order to verify the correctness of the reversed linked list, we write some test code to execute.
func TestReverseLinkedList(t *testing.T) {
head := &ListNode{Val: 1} node1 := &ListNode{Val: 2} node2 := &ListNode{Val: 3} node3 := &ListNode{Val: 4} node4 := &ListNode{Val: 5} head.Next = node1 node1.Next = node2 node2.Next = node3 node3.Next = node4 newHead := reverseLinkedList(head) assert.Equal(t, newHead.Val, 5) assert.Equal(t, newHead.Next.Val, 4) assert.Equal(t, newHead.Next.Next.Val, 3) assert.Equal(t, newHead.Next.Next.Next.Val, 2) assert.Equal(t, newHead.Next.Next.Next.Next.Val, 1)
}
- Reverse part of the linked list
In addition to reversing the entire In addition to linked lists, we can also reverse part of the linked list. For example, reverse the part from node m to node n in the linked list. We just need to make slight modifications based on reversing the entire linked list.
We can first traverse to the m-1th node, the pre pointer points to this node, and cur points to the m-th node. Then, we perform the steps of reversing the linked list until we reverse to the nth node.
The implementation code is as follows:
func reverseBetween(head ListNode, m int, n int) ListNode {
dummy := &ListNode{0, head} pre := dummy for i := 1; i <p>}</p><ol start="5"> <li>Test code for reversing partial linked list</li> </ol><p>In order to verify the correctness of reversing partial linked list, we write some test code for verification. </p><p>func TestReverseBetween(t *testing.T) {</p><pre class="brush:php;toolbar:false">head := &ListNode{Val: 1} node1 := &ListNode{Val: 2} node2 := &ListNode{Val: 3} node3 := &ListNode{Val: 4} node4 := &ListNode{Val: 5} head.Next = node1 node1.Next = node2 node2.Next = node3 node3.Next = node4 newHead := reverseBetween(head, 2, 4) assert.Equal(t, newHead.Val, 1) assert.Equal(t, newHead.Next.Val, 4) assert.Equal(t, newHead.Next.Next.Val, 3) assert.Equal(t, newHead.Next.Next.Next.Val, 2) assert.Equal(t, newHead.Next.Next.Next.Next.Val, 5)
}
- Summary
In this article, we use golang Implemented the reversal linked list algorithm, including reversing the entire linked list and reversing part of the linked list. Reversing a linked list is a common interview question and is also a basic algorithm for solving problems related to linked lists. If you are interested in linked list algorithms, it is recommended that you study in depth other linked list related algorithms, such as fast and slow pointers, circular linked lists, deleting nodes, etc.
The above is the detailed content of How to reverse linked list in golang. For more information, please follow other related articles on the PHP Chinese website!

Goimpactsdevelopmentpositivelythroughspeed,efficiency,andsimplicity.1)Speed:Gocompilesquicklyandrunsefficiently,idealforlargeprojects.2)Efficiency:Itscomprehensivestandardlibraryreducesexternaldependencies,enhancingdevelopmentefficiency.3)Simplicity:

C is more suitable for scenarios where direct control of hardware resources and high performance optimization is required, while Golang is more suitable for scenarios where rapid development and high concurrency processing are required. 1.C's advantage lies in its close to hardware characteristics and high optimization capabilities, which are suitable for high-performance needs such as game development. 2.Golang's advantage lies in its concise syntax and natural concurrency support, which is suitable for high concurrency service development.

Golang excels in practical applications and is known for its simplicity, efficiency and concurrency. 1) Concurrent programming is implemented through Goroutines and Channels, 2) Flexible code is written using interfaces and polymorphisms, 3) Simplify network programming with net/http packages, 4) Build efficient concurrent crawlers, 5) Debugging and optimizing through tools and best practices.

The core features of Go include garbage collection, static linking and concurrency support. 1. The concurrency model of Go language realizes efficient concurrent programming through goroutine and channel. 2. Interfaces and polymorphisms are implemented through interface methods, so that different types can be processed in a unified manner. 3. The basic usage demonstrates the efficiency of function definition and call. 4. In advanced usage, slices provide powerful functions of dynamic resizing. 5. Common errors such as race conditions can be detected and resolved through getest-race. 6. Performance optimization Reuse objects through sync.Pool to reduce garbage collection pressure.

Go language performs well in building efficient and scalable systems. Its advantages include: 1. High performance: compiled into machine code, fast running speed; 2. Concurrent programming: simplify multitasking through goroutines and channels; 3. Simplicity: concise syntax, reducing learning and maintenance costs; 4. Cross-platform: supports cross-platform compilation, easy deployment.

Confused about the sorting of SQL query results. In the process of learning SQL, you often encounter some confusing problems. Recently, the author is reading "MICK-SQL Basics"...

The relationship between technology stack convergence and technology selection In software development, the selection and management of technology stacks are a very critical issue. Recently, some readers have proposed...

Golang ...


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

SublimeText3 Linux new version
SublimeText3 Linux latest version

Atom editor mac version download
The most popular open source editor

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 Mac version
God-level code editing software (SublimeText3)