Home > Article > Backend Development > Using Python to implement a simple four arithmetic interpreter
Here we first show the help information of the program, and then a few simple four arithmetic operations tests. It seems that there is no problem (I cannot guarantee that the program has no bugs!).
This formatted JSON message is too long. Not conducive to direct viewing. We render it to see the final generated tree diagram (see the previous two blogs for methods). Save the following JSON in a file, here I call it demo.json, and then execute the following command: pytm-cli -d LR -i demo.json -o demo.html
, and then open the generated file in the browser html file.
my_eval.py, if you want to run it, copy and paste, and then follow the steps of the demonstration.
The lexizer method in Calculator is used for word segmentation. Originally, I planned to use regularization. If you have read my previous blog, you can I found that I used regular expressions to segment words (because there is a simple word segmentation program in the regular expressions of Python's official documentation). But I saw that other people were writing participles by hand, so I did the same, but it didn’t feel very good, it was very tedious and error-prone.
The parse method is for parsing, mainly to analyze the structure of the expression, determine whether it conforms to the grammar of the four arithmetic operations, and finally generate the expression tree (its AST).
""" Grammar G -> E E -> T E' E' -> '+' T E' | '-' T E' | ɛ T -> F T' T' -> '*' F T' | '/' F T' | ɛ F -> '(' E ')' | num | name """ import json import argparse class Node: """ 简单的抽象语法树节点,定义一些需要使用到的具有层次结构的节点 """ def eval(self) -> float: ... # 节点的计算方法 def visit(self): ... # 节点的访问方法 class BinOp(Node): """ BinOp Node """ def __init__(self, left, op, right) -> None: self.left = left self.op = op self.right = right def eval(self) -> float: if self.op == "+": return self.left.eval() + self.right.eval() if self.op == "-": return self.left.eval() - self.right.eval() if self.op == "*": return self.left.eval() * self.right.eval() if self.op == "/": return self.left.eval() / self.right.eval() return 0 def visit(self): """ 遍历树的各个节点,并生成 JSON 表示 """ return { "name": "BinOp", "children": [ self.left.visit(), { "name": "OP", "children": [ { "name": self.op } ] }, self.right.visit() ] } class Constant(Node): """ Constant Node """ def __init__(self, value) -> None: self.value = value def eval(self) -> float: return self.value def visit(self): return { "name": "NUMBER", "children": [ { "name": str(self.value) # 转成字符是因为渲染成图像时,需要该字段为 str } ] } class Calculator: """ Simple Expression Parser """ def __init__(self, expr) -> None: self.expr = expr # 输入的表达式 self.parse_end = False # 解析是否结束,默认未结束 self.toks = [] # 解析的 tokens self.index = 0 # 解析的下标 def lexizer(self): """ 分词 """ index = 0 while index < len(self.expr): ch = self.expr[index] if ch in [" ", "\r", "\n"]: index += 1 continue if '0' <= ch <= '9': num_str = ch index += 1 while index < len(self.expr): n = self.expr[index] if '0' <= n <= '9': if ch == '0': raise Exception("Invalid number!") num_str = n index += 1 continue break self.toks.append({ "kind": "INT", "value": int(num_str) }) elif ch in ['+', '-', '*', '/', '(', ')']: self.toks.append({ "kind": ch, "value": ch }) index += 1 else: raise Exception("Unkonwn character!") def get_token(self): """ 获取当前位置的 token """ if 0 <= self.index < len(self.toks): tok = self.toks[self.index] return tok if self.index == len(self.toks): # token解析结束 return { "kind": "EOF", "value": "EOF" } raise Exception("Encounter Error, invalid index = ", self.index) def move_token(self): """ 下标向后移动一位 """ self.index += 1 def parse(self) -> Node: """ G -> E """ # 分词 self.lexizer() # 解析 expr_tree = self.parse_expr() if self.parse_end: return expr_tree else: raise Exception("Invalid expression!") def parse_expr(self): """ E -> T E' E' -> + T E' | - T E' | ɛ """ # E -> E E' left = self.parse_term() # E' -> + T E' | - T E' | ɛ while True: tok = self.get_token() kind = tok["kind"] value = tok["value"] if tok["kind"] == "EOF": # 解析结束的标志 self.parse_end = True break if kind in ["+", "-"]: self.move_token() left = BinOp(left, value, self.parse_term()) else: break return left def parse_term(self): """ T -> F T' T' -> * F T' | / F T' | ɛ """ # T -> F T' left = self.parse_factor() # T' -> * F T' | / F T' | ɛ while True: tok = self.get_token() kind = tok["kind"] value = tok["value"] if kind in ["*", "/"]: self.move_token() right = self.parse_factor() left = BinOp(left, value, right) else: break return left def parse_factor(self): """ F -> '(' E ')' | num | name """ tok = self.get_token() kind = tok["kind"] value = tok["value"] if kind == '(': self.move_token() expr_node = self.parse_expr() if self.get_token()["kind"] != ")": raise Exception("Encounter Error, expected )!") self.move_token() return expr_node if kind == "INT": self.move_token() return Constant(value=value) raise Exception("Encounter Error, unknown factor: ", kind) if __name__ == "__main__": # 添加命令行参数解析器 cmd_parser = argparse.ArgumentParser( description="Simple Expression Interpreter!") group = cmd_parser.add_mutually_exclusive_group() group.add_argument("--tokens", help="print tokens", action="store_true") group.add_argument("--ast", help="print ast in JSON", action="store_true") cmd_parser.add_argument( "expr", help="expression, contains ['+', '-', '*', '/', '(', ')', 'num']") args = cmd_parser.parse_args() calculator = Calculator(expr=args.expr) tree = calculator.parse() if args.tokens: # 输出 tokens for t in calculator.toks: print(f"{t['kind']:3s} ==> {t['value']}") elif args.ast: # 输出 JSON 表示的 AST print(json.dumps(tree.visit(), indent=4)) else: # 计算结果 print(tree.eval())SummaryI originally wanted to talk about why it is called
my_eval.py, but I feel that there are not many people behind it, so I will say it here. If you write a complex expression, how do you verify whether it is correct? Here we can just use Python, the most perfect interpreter, haha. Python's eval function is used here. Of course, you don't need to call this function, just copy the calculated expression directly. I use the eval function just to express why my program is called
my_eval.
The above is the detailed content of Using Python to implement a simple four arithmetic interpreter. For more information, please follow other related articles on the PHP Chinese website!