Home >Java >javaTutorial >Java distributed Kafka message queue instance analysis
Apache Kafka is a distributed publish-subscribe messaging system. The definition of kafka on the kafka official website is: a distributed publish-subscribe messaging system. It was originally developed by LinkedIn, which was contributed to the Apache Foundation in 2010 and became a top open source project. Kafka is a fast, scalable, and inherently distributed, partitioned, and replicable commit log service.
Note: Kafka does not follow the JMS specification (), it only provides publish and subscribe communication methods.
Broker: Kafka node, a Kafka node is a broker, multiple brokers can form a Kafka cluster
Topic: A type of message. The directory where the message is stored is the topic. For example, page view logs, click logs, etc. can exist in the form of topics. The Kafka cluster can be responsible for the distribution of multiple topics at the same time.
massage: The most basic delivery object in Kafka.
Partition: The physical grouping of topics. A topic can be divided into multiple partitions, and each partition is an ordered queue. Partitioning is implemented in Kafka, and a broker represents a region.
Segment: Partition is physically composed of multiple segments. Each segment stores message information.
Producer: Producer, produces messages and sends them. Go to topic
tar -zxvf kafka_2.11 -1.0.0.tgz3. Modify kafka’s configuration file config/server.propertiesConfiguration file modification content:
zookeeper.connect=192.168.1.19:2181
listeners=PLAINTEXT:// 192.168.1.19:9092
broker.id=0
./kafka-server-start.sh -daemon config/server.properties
./kafka-topics.sh --create --zookeeper localhost: 2181 --replication-factor 1 --partitions 3 --topic kaico
<dependencies> <!-- springBoot集成kafka --> <dependency> <groupId>org.springframework.kafka</groupId> <artifactId>spring-kafka</artifactId> </dependency> <!-- SpringBoot整合Web组件 --> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> </dependencies>
yml configuration
# kafka spring: kafka: # kafka服务器地址(可以多个) # bootstrap-servers: 192.168.212.164:9092,192.168.212.167:9092,192.168.212.168:9092 bootstrap-servers: www.kaicostudy.com:9092,www.kaicostudy.com:9093,www.kaicostudy.com:9094 consumer: # 指定一个默认的组名 group-id: kafkaGroup1 # earliest:当各分区下有已提交的offset时,从提交的offset开始消费;无提交的offset时,从头开始消费 # latest:当各分区下有已提交的offset时,从提交的offset开始消费;无提交的offset时,消费新产生的该分区下的数据 # none:topic各分区都存在已提交的offset时,从offset后开始消费;只要有一个分区不存在已提交的offset,则抛出异常 auto-offset-reset: earliest # key/value的反序列化 key-deserializer: org.apache.kafka.common.serialization.StringDeserializer value-deserializer: org.apache.kafka.common.serialization.StringDeserializer producer: # key/value的序列化 key-serializer: org.apache.kafka.common.serialization.StringSerializer value-serializer: org.apache.kafka.common.serialization.StringSerializer # 批量抓取 batch-size: 65536 # 缓存容量 buffer-memory: 524288 # 服务器地址 bootstrap-servers: www.kaicostudy.com:9092,www.kaicostudy.com:9093,www.kaicostudy.com:9094
producer
@RestController public class KafkaController { /** * 注入kafkaTemplate */ @Autowired private KafkaTemplate<String, String> kafkaTemplate; /** * 发送消息的方法 * * @param key * 推送数据的key * @param data * 推送数据的data */ private void send(String key, String data) { // topic 名称 key data 消息数据 kafkaTemplate.send("kaico", key, data); } // test 主题 1 my_test 3 @RequestMapping("/kafka") public String testKafka() { int iMax = 6; for (int i = 1; i < iMax; i++) { send("key" + i, "data" + i); } return "success"; } }
consumer
@Component public class TopicKaicoConsumer { /** * 消费者使用日志打印消息 */ @KafkaListener(topics = "kaico") //监听的主题 public void receive(ConsumerRecord<?, ?> consumer) { System.out.println("topic名称:" + consumer.topic() + ",key:" + consumer.key() + "," + "分区位置:" + consumer.partition() + ", 下标" + consumer.offset()); //输出key对应的value的值 System.out.println(consumer.value()); } }
The above is the detailed content of Java distributed Kafka message queue instance analysis. For more information, please follow other related articles on the PHP Chinese website!