1. Brief description:
Given two strings str1 and str2, output the longest common subsequence of the two strings. If the longest common subsequence is empty, "-1" is returned. In the data currently given, there will only be one longest common subsequence
Data range:
Requirements: space complexity, time complexity
Input:
"1A2C3D4B56","B1D23A456A"
Return value:
"123456"
Input:
"abc","def"
Return value:
"-1"
Input:
"abc","abc"
Return value:
"abc"
Input:
"ab",""
Return value:
"-1"
2. Code implementation:
import java.util.*; public class Solution { public String LCS (String s1, String s2) { //只要有一个空字符串便不会有子序列 if(s1.length() == 0 || s2.length() == 0) return "-1"; int len1 = s1.length(); int len2 = s2.length(); //dp[i][j]表示第一个字符串到第i位,第二个字符串到第j位为止的最长公共子序列长度 int[][] dp = new int[len1 + 1][len2 + 1]; //遍历两个字符串每个位置求的最长长度 for(int i = 1; i <= len1; i++){ for(int j = 1; j <= len2; j++){ //遇到两个字符相等 if(s1.charAt(i - 1) == s2.charAt(j - 1)) //来自于左上方 dp[i][j] = dp[i - 1][j - 1] + 1; //遇到的两个字符不同 else //来自左边或者上方的最大值 dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]); } } //从动态规划数组末尾开始 int i = len1, j = len2; Stacks = new Stack (); while(dp[i][j] != 0){ //来自于左方向 if(dp[i][j] == dp[i - 1][j]) i--; //来自于上方向 else if(dp[i][j] == dp[i][j - 1]) j--; //来自于左上方向 else if(dp[i][j] > dp[i - 1][j - 1]){ i--; j--; //只有左上方向才是字符相等的情况,入栈,逆序使用 s.push(s1.charAt(i)); } } String res = ""; //拼接子序列 while(!s.isEmpty()) res += s.pop(); //如果两个完全不同,返回字符串为空,则要改成-1 return !res.isEmpty() ? res : "-1"; } }
The above is the detailed content of How to solve the longest common subsequence problem in Java. For more information, please follow other related articles on the PHP Chinese website!