Home >Java >javaTutorial >How to solve the longest common subsequence problem in Java

How to solve the longest common subsequence problem in Java

王林
王林forward
2023-04-14 21:40:011225browse

1. Brief description:

Description

Given two strings str1 and str2, output the longest common subsequence of the two strings. If the longest common subsequence is empty, "-1" is returned. In the data currently given, there will only be one longest common subsequence

Data range:

Requirements: space complexity, time complexity

Example 1

Input:

"1A2C3D4B56","B1D23A456A"

Return value:

"123456"

Example 2

Input:

"abc","def"

Return value:

"-1"

Example 3

Input:

"abc","abc"

Return value:

"abc"

Example 4

Input:

"ab",""

Return value:

"-1"

2. Code implementation:

import java.util.*;
public class Solution {
    public String LCS (String s1, String s2) {
        //只要有一个空字符串便不会有子序列
        if(s1.length() == 0 || s2.length() == 0) 
            return "-1";
        int len1 = s1.length();
        int len2 = s2.length();
        //dp[i][j]表示第一个字符串到第i位,第二个字符串到第j位为止的最长公共子序列长度
        int[][] dp = new int[len1 + 1][len2 + 1]; 
        //遍历两个字符串每个位置求的最长长度
        for(int i = 1; i <= len1; i++){
            for(int j = 1; j <= len2; j++){
                //遇到两个字符相等
                if(s1.charAt(i - 1) == s2.charAt(j - 1))
                    //来自于左上方
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                //遇到的两个字符不同
                else
                    //来自左边或者上方的最大值
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
            }
        }
        //从动态规划数组末尾开始
        int i = len1, j = len2;
        Stack s = new Stack();
        while(dp[i][j] != 0){
            //来自于左方向
            if(dp[i][j] == dp[i - 1][j])
                i--;
            //来自于上方向
            else if(dp[i][j] == dp[i][j - 1])
                j--;
            //来自于左上方向
            else if(dp[i][j] > dp[i - 1][j - 1]){
                i--;
                j--;
                //只有左上方向才是字符相等的情况,入栈,逆序使用
                s.push(s1.charAt(i)); 
           }
        }
        String res = "";
        //拼接子序列
        while(!s.isEmpty())
            res += s.pop();
        //如果两个完全不同,返回字符串为空,则要改成-1
        return !res.isEmpty() ? res : "-1";  
    }
}

The above is the detailed content of How to solve the longest common subsequence problem in Java. For more information, please follow other related articles on the PHP Chinese website!

Statement:
This article is reproduced at:yisu.com. If there is any infringement, please contact admin@php.cn delete