


Learning a diffusion model from a single natural image is better than GAN, SinDiffusion achieves new SOTA
The technology of generating images from a single natural image is widely used and has therefore received more and more attention. This research aims to learn an unconditional generative model from a single natural image to generate different samples with similar visual content by capturing patch internal statistics. Once trained, the model can not only generate high-quality, resolution-independent images, but can also be easily adapted to a variety of applications, such as image editing, image harmonization, and conversion between images.
SinGAN can meet the above requirements. This method can construct multiple scales of natural images and train a series of GANs to learn the internal statistics of patches in a single image. The core idea of SinGAN is to train multiple models at progressively increasing scales. However, the images generated by these methods can be unsatisfactory because they suffer from small-scale detail errors, resulting in obvious artifacts in the generated images (see Figure 2).
In this article, researchers from the University of Science and Technology of China, Microsoft Research Asia and other institutions proposed a new Framework - Single-image Diffusion (SinDiffusion, Single-image Diffusion), for learning from a single natural image, which is based on the Denoising Diffusion Probabilistic Model (DDPM). Although the diffusion model is a multiple-step generation process, it does not have the problem of cumulative errors. The reason is that the diffusion model has a systematic mathematical formula, and errors in intermediate steps can be regarded as interference and can be improved during the diffusion process.
Another core design of SinDiffusion is to limit the receptive field of the diffusion model. This study reviewed the network structure commonly used in previous diffusion models [7] and found that it has stronger performance and deeper structure. However, the receptive field of this network structure is large enough to cover the entire image, which causes the model to tend to rely on memory training images to generate images that are exactly the same as the training images. In order to encourage the model to learn patch statistics instead of memorizing the entire image, the research carefully designed the network structure and introduced a patch-wise denoising network. Compared with the previous diffusion structure, SinDiffusion reduces the number of downsampling and the number of ResBlocks in the original denoising network structure. In this way, SinDiffusion can learn from a single natural image and generate high-quality and diverse images (see Figure 2).
- Paper address: https://arxiv.org/pdf/2211.12445.pdf
- Project address: https://github.com/WeilunWang/SinDiffusion
The advantage of SinDiffusion is that it can be flexibly used in various scenarios (see Figure 1). It can be used in various applications without any retraining of the model. In SinGAN, downstream applications are mainly implemented by inputting conditions into pre-trained GANs at different scales. Therefore, the application of SinGAN is limited to those given spatially aligned conditions. In contrast, SinDiffusion can be used in a wider range of applications by designing the sampling procedure. SinDiffusion learns to predict the gradient of a data distribution through unconditional training. Assuming there is a scoring function describing the correlation between generated images and conditions (i.e., L−p distance or a pre-trained network such as CLIP), this study utilizes the gradient of the correlation score to guide the sampling process of SinDiffusion. In this way, SinDiffusion is able to generate images that fit both the data distribution and the given conditions.
The study conducted experiments on various natural images to demonstrate the advantages of the proposed framework. The experimental subjects include Landscapes and famous art. Both quantitative and qualitative results confirm that SinDiffusion can produce high-fidelity and diverse results, while downstream applications further demonstrate the utility and flexibility of SinDiffusion.
Method
Different from the progressive growth design in previous studies, SinDiffusion uses a single denoising model at a single scale for training, preventing the accumulation of errors. In addition, this study found that the patch-level receptive field of the diffusion network plays an important role in capturing the internal patch distribution, and designed a new denoising network structure. Based on these two core designs, SinDiffusion generates high-quality and diverse images from a single natural image.
The rest of this section is organized as follows: first we review SinGAN and show the motivation of SinDiffusion, and then introduce the structural design of SinDiffusion.
First, let’s briefly review SinGAN. Figure 3(a) shows the generation process of SinGAN. In order to generate different images from a single image, a key design of SinGAN is to build an image pyramid and gradually increase the resolution of the generated images.
Figure 3(b) shows the new framework of SinDiffusion. Unlike SinGAN, SinDiffusion performs a multi-step generation process using a single denoising network at a single scale. Although SinDiffusion also uses the same multi-step generation process as SinGAN, the generated results are of high quality. This is because the diffusion model is based on the systematic derivation of mathematical equations, and errors generated by intermediate steps are repeatedly refined into noise during the diffusion process.
SinDiffusion
This article studied The relationship between generation diversity and the receptive field of the denoising network - Modifying the network structure of the denoising network can change the receptive field, and four network structures with different receptive fields but equivalent performance were designed to train these models on a single natural image. Figure 4 shows the results generated by the model under different receptive fields. It can be observed that the smaller the receptive field, the more diverse the generated results produced by SinDiffusion and vice versa. However, research has found that extremely small receptive field models cannot maintain the reasonable structure of the image. Therefore, a suitable receptive field is important and necessary to obtain reasonable patch statistics.
This research redesigns the commonly used diffusion model and introduces patch-wise for single image generation Denoising network. Figure 5 is an overview of the patch-wise denoising network in SinDiffusion and shows the main differences from previous denoising networks. First, the depth of the denoising network is reduced by reducing downsampling and upsampling operations, thereby greatly expanding the receptive field. At the same time, the deep attention layers originally used in the denoising network are naturally removed, making SinDiffusion a fully convolutional network suitable for generation at any resolution. Second, the receptive field of SinDiffusion is further limited by reducing the resblock of embedded time in each resolution. This method is used to obtain a patch-wise denoising network with appropriate receptive fields, achieving realistic and diverse results.
Experiment
The qualitative results of SinDiffusion’s randomly generated images are shown in Figure 6.
It can be found that at different resolutions, SinDiffusion can generate real images with similar patterns to the training images.
In addition, this article also studies SinDiffusion to generate high-resolution images from a single image. Figure 13 shows the training images and the generated results. The training image is a 486 × 741 resolution landscape image containing rich components such as clouds, mountains, grass, flowers, and a lake. To accommodate high-resolution image generation, SinDiffusion has been upgraded to an enhanced version with larger receptive fields and network capabilities. The enhanced version of SinDiffusion generates a high-resolution long scrolling image with a resolution of 486×2048. The generated effect keeps the internal layout of the training image unchanged and summarizes new content, as shown in Figure 13.
Comparison with previous methods
Table 1 shows the difference between SinDiffusion and The quantitative results produced are compared with several challenging methods (i.e., SinGAN, ExSinGAN, ConSinGAN and GPNN). Compared with previous GAN-based methods, SinDiffusion achieved SOTA performance after gradual improvements. It is worth mentioning that the research method in this article has greatly improved the diversity of generated images. On the average of 50 models trained on the Places50 data set, this method surpassed the current most challenging method with a score of 0.082 LPIPS. .
In addition to the quantitative results, Figure 8 also shows the qualitative results on the Places50 dataset.
Figure 15 shows the text-guided image generation results of SinDiffusion and previous methods.
Please see the original paper for more information.
The above is the detailed content of Learning a diffusion model from a single natural image is better than GAN, SinDiffusion achieves new SOTA. For more information, please follow other related articles on the PHP Chinese website!

The legal tech revolution is gaining momentum, pushing legal professionals to actively embrace AI solutions. Passive resistance is no longer a viable option for those aiming to stay competitive. Why is Technology Adoption Crucial? Legal professional

Many assume interactions with AI are anonymous, a stark contrast to human communication. However, AI actively profiles users during every chat. Every prompt, every word, is analyzed and categorized. Let's explore this critical aspect of the AI revo

A successful artificial intelligence strategy cannot be separated from strong corporate culture support. As Peter Drucker said, business operations depend on people, and so does the success of artificial intelligence. For organizations that actively embrace artificial intelligence, building a corporate culture that adapts to AI is crucial, and it even determines the success or failure of AI strategies. West Monroe recently released a practical guide to building a thriving AI-friendly corporate culture, and here are some key points: 1. Clarify the success model of AI: First of all, we must have a clear vision of how AI can empower business. An ideal AI operation culture can achieve a natural integration of work processes between humans and AI systems. AI is good at certain tasks, while humans are good at creativity and judgment

Meta upgrades AI assistant application, and the era of wearable AI is coming! The app, designed to compete with ChatGPT, offers standard AI features such as text, voice interaction, image generation and web search, but has now added geolocation capabilities for the first time. This means that Meta AI knows where you are and what you are viewing when answering your question. It uses your interests, location, profile and activity information to provide the latest situational information that was not possible before. The app also supports real-time translation, which completely changed the AI experience on Ray-Ban glasses and greatly improved its usefulness. The imposition of tariffs on foreign films is a naked exercise of power over the media and culture. If implemented, this will accelerate toward AI and virtual production

Artificial intelligence is revolutionizing the field of cybercrime, which forces us to learn new defensive skills. Cyber criminals are increasingly using powerful artificial intelligence technologies such as deep forgery and intelligent cyberattacks to fraud and destruction at an unprecedented scale. It is reported that 87% of global businesses have been targeted for AI cybercrime over the past year. So, how can we avoid becoming victims of this wave of smart crimes? Let’s explore how to identify risks and take protective measures at the individual and organizational level. How cybercriminals use artificial intelligence As technology advances, criminals are constantly looking for new ways to attack individuals, businesses and governments. The widespread use of artificial intelligence may be the latest aspect, but its potential harm is unprecedented. In particular, artificial intelligence

The intricate relationship between artificial intelligence (AI) and human intelligence (NI) is best understood as a feedback loop. Humans create AI, training it on data generated by human activity to enhance or replicate human capabilities. This AI

Anthropic's recent statement, highlighting the lack of understanding surrounding cutting-edge AI models, has sparked a heated debate among experts. Is this opacity a genuine technological crisis, or simply a temporary hurdle on the path to more soph

India is a diverse country with a rich tapestry of languages, making seamless communication across regions a persistent challenge. However, Sarvam’s Bulbul-V2 is helping to bridge this gap with its advanced text-to-speech (TTS) t


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Chinese version
Chinese version, very easy to use

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

DVWA
Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

mPDF
mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.
