


Seven practical Python automation codes, stop reinventing the wheel!
There is a famous saying about Python: Don’t reinvent the wheel.
But there are three problems:
1. You don’t know which wheels have been built and which one is suitable for you. There are more than 400 famous wheels with names and surnames, not to mention the wheels that are being manufactured by themselves without names or surnames.
2. It is true that we are not reinventing the wheel, but we are reinventing the car. Including hundreds of lines of code written by many masters, in order to solve a mature function that Excel itself has.
3. Many people use it to capture pictures, data, pictures, videos, and weather forecasts for their own entertainment. What next? What is the use of big data after capturing it? For example, a certain beer sells quickly, but what next? For example, a certain movie has a lot of box office, and then what?
The following is the code that has been debugged with Python 3.6.4 and is shared with everyone:
1. Grab Zhihu pictures
2. Listen to two chatbots chatting with each other
3. AI analysis of whether the author of Tang poetry is Li Bai or Du Fu
4. Lottery randomly generates 7 out of 35
5. Automatically writes a letter of apology
6. Screen recorder
7. Make Gif animation
① Capture Zhihu pictures with only 30 lines of code
from selenium import webdriver import time import urllib.request driver = webdriver.Chrome() driver.maximize_window() driver.get("https://www.zhihu.com/question/29134042") i = 0 while i < 10: driver.execute_script("window.scrollTo(0, document.body.scrollHeight);") time.sleep(2) try: driver.find_element_by_css_selector('button.QuestionMainAction').click() print("page" + str(i)) time.sleep(1) except: break result_raw = driver.page_source content_list = re.findall("img src="(.+?)" ", str(result_raw)) n = 0 while n < len(content_list): i = time.time() local = (r"%s.jpg" % (i)) urllib.request.urlretrieve(content_list[n], local) print("编号:" + str(i)) n = n + 1
② Listen to two chats when you have nothing to do Robots chat with each other
from time import sleep import requests s = input("请主人输入话题:") while True: resp = requests.post("http://www.tuling123.com/openapi/api",data={"key":"4fede3c4384846b9a7d0456a5e1e2943", "info": s, }) resp = resp.json() sleep(1) print('小鱼:', resp['text']) s = resp['text'] resp = requests.get("http://api.qingyunke.com/api.php", {'key': 'free', 'appid':0, 'msg': s}) resp.encoding = 'utf8' resp = resp.json() sleep(1) print('菲菲:', resp['content']) #网上还有一个据说智商比较高的小i机器人,用爬虫的功能来实现一下: import urllib.request import re while True: x = input("主人:") x = urllib.parse.quote(x) link = urllib.request.urlopen( "http://nlp.xiaoi.com/robot/webrobot?&callback=__webrobot_processMsg&data=%7B%22sessionId%22%3A%22ff725c236e5245a3ac825b2dd88a7501%22%2C%22robotId%22%3A%22webbot%22%2C%22userId%22%3A%227cd29df3450745fbbdcf1a462e6c58e6%22%2C%22body%22%3A%7B%22content%22%3A%22" + x + "%22%7D%2C%22type%22%3A%22txt%22%7D") html_doc = link.read().decode() reply_list = re.findall(r'"content":"(.+?)\r\n"', html_doc) print("小i:" + reply_list[-1])
③ Analyze whether the author of Tang poetry is Li Bai or Du Fu
import jieba from nltk.classify import NaiveBayesClassifier # 需要提前把李白的诗收集一下,放在libai.txt文本中。 text1 = open(r"libai.txt", "rb").read() list1 = jieba.cut(text1) result1 = " ".join(list1) # 需要提前把杜甫的诗收集一下,放在dufu.txt文本中。 text2 = open(r"dufu.txt", "rb").read() list2 = jieba.cut(text2) result2 = " ".join(list2) # 数据准备 libai = result1 dufu = result2 # 特征提取 def word_feats(words): return dict([(word, True) for word in words]) libai_features = [(word_feats(lb), 'lb') for lb in libai] dufu_features = [(word_feats(df), 'df') for df in dufu] train_set = libai_features + dufu_features # 训练决策 classifier = NaiveBayesClassifier.train(train_set) # 分析测试 sentence = input("请输入一句你喜欢的诗:") print("n") seg_list = jieba.cut(sentence) result1 = " ".join(seg_list) words = result1.split(" ") # 统计结果 lb = 0 df = 0 for word in words: classResult = classifier.classify(word_feats(word)) if classResult == 'lb': lb = lb + 1 if classResult == 'df': df = df + 1 # 呈现比例 x = float(str(float(lb) / len(words))) y = float(str(float(df) / len(words))) print('李白的可能性:%.2f%%' % (x * 100)) print('杜甫的可能性:%.2f%%' % (y * 100))
④ Lottery randomly generates 7 out of 35
import random temp = [i + 1 for i in range(35)] random.shuffle(temp) i = 0 list = [] while i < 7: list.append(temp[i]) i = i + 1 list.sort() print('33[0;31;;1m') print(*list[0:6], end="") print('33[0;34;;1m', end=" ") print(list[-1])
⑤ Automatically write a letter of apology
import random import xlrd ExcelFile = xlrd.open_workbook(r'test.xlsx') sheet = ExcelFile.sheet_by_name('Sheet1') i = [] x = input("请输入具体事件:") y = int(input("老师要求的字数:")) while len(str(i)) < y * 1.2: s = random.randint(1, 60) rows = sheet.row_values(s) i.append(*rows) print(" "*8+"检讨书"+"n"+"老师:") print("我不应该" + str(x)+",", *i) print("再次请老师原谅!") ''' 以下是样稿: 请输入具体事件:抽烟 老师要求的字数:200 检讨书 老师: 我不应该抽烟, 学校一开学就三令五申,一再强调校规校纪,提醒学生不要违反校规,可我却没有把学校和老师的话放在心上,没有重视老师说的话,没有重视学校颁布的重要事项,当成了耳旁风,这些都是不应该的。同时也真诚地希望老师能继续关心和支持我,并却对我的问题酌情处理。 无论在学习还是在别的方面我都会用校规来严格要求自己,我会把握这次机会。 但事实证明,仅仅是热情投入、刻苦努力、钻研学业是不够的,还要有清醒的政治头脑、大局意识和纪律观念,否则就会在学习上迷失方向,使国家和学校受损失。 再次请老师原谅! '''
⑥Screen recorder, screen capture software
from time import sleep from PIL import ImageGrab m = int(input("请输入想抓屏几分钟:")) m = m * 60 n = 1 while n < m: sleep(0.02) im = ImageGrab.grab() local = (r"%s.jpg" % (n)) im.save(local, 'jpeg') n = n + 1
⑦ Make Gif animation
from PIL import Image im = Image.open("1.jpg") images = [] images.append(Image.open('2.jpg')) images.append(Image.open('3.jpg')) im.save('gif.gif', save_all=True, append_images=images, loop=1, duration=1, comment=b"aaabb")
You can try it out.
The above is the detailed content of Seven practical Python automation codes, stop reinventing the wheel!. For more information, please follow other related articles on the PHP Chinese website!

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

Python's real-world applications include data analytics, web development, artificial intelligence and automation. 1) In data analysis, Python uses Pandas and Matplotlib to process and visualize data. 2) In web development, Django and Flask frameworks simplify the creation of web applications. 3) In the field of artificial intelligence, TensorFlow and PyTorch are used to build and train models. 4) In terms of automation, Python scripts can be used for tasks such as copying files.

Python is widely used in data science, web development and automation scripting fields. 1) In data science, Python simplifies data processing and analysis through libraries such as NumPy and Pandas. 2) In web development, the Django and Flask frameworks enable developers to quickly build applications. 3) In automated scripts, Python's simplicity and standard library make it ideal.

Python's flexibility is reflected in multi-paradigm support and dynamic type systems, while ease of use comes from a simple syntax and rich standard library. 1. Flexibility: Supports object-oriented, functional and procedural programming, and dynamic type systems improve development efficiency. 2. Ease of use: The grammar is close to natural language, the standard library covers a wide range of functions, and simplifies the development process.

Python is highly favored for its simplicity and power, suitable for all needs from beginners to advanced developers. Its versatility is reflected in: 1) Easy to learn and use, simple syntax; 2) Rich libraries and frameworks, such as NumPy, Pandas, etc.; 3) Cross-platform support, which can be run on a variety of operating systems; 4) Suitable for scripting and automation tasks to improve work efficiency.

Yes, learn Python in two hours a day. 1. Develop a reasonable study plan, 2. Select the right learning resources, 3. Consolidate the knowledge learned through practice. These steps can help you master Python in a short time.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Atom editor mac version download
The most popular open source editor

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use