search
HomeTechnology peripheralsAIStanford's 7 billion parameter open source model is comparable to GPT-3.5 and can be reproduced for $100

As large-scale language models become increasingly powerful, people have put forward higher ethical requirements for AI models. The industry has the advantage of computing resources in terms of model scale expansion, but making the model more standardized and reliable requires the efforts of the academic community.

Recently, Stanford fine-tuned a new model Alpaca based on Meta's LLaMA 7B model. This study used OpenAI's text-davinci-003 model to generate 52K instruction-following samples in a self-instruct manner as training data for Alpaca. The research team has open sourced the training data, the code to generate the training data, and the hyperparameters, and will release the model weights and training code in the future.

Stanfords 7 billion parameter open source model is comparable to GPT-3.5 and can be reproduced for $100

  • ## Project address: https://github.com/tatsu-lab/stanford_alpaca
  • Trial address: https://alpaca-ai-custom6.ngrok.io/

Experimental results show that many behaviors of Alpaca are similar to text-davinci-003. In other words, the performance of Alpaca, a lightweight model with only 7B parameters, is comparable to very large-scale language models such as GPT-3.5.

Let’s take a look at how the Alpaca model does it.

Training Method

Training high-quality instruction following models within the budget conditions of academia faces two important challenges: powerful pre-trained language models and high-quality The instructions follow the data.

Meta’s recently released LLaMA family of models addresses the first challenge. For the second challenge, the self-instruct paper at the end of 2022 proposes to use existing powerful language models to automatically generate instruction data.

Stanfords 7 billion parameter open source model is comparable to GPT-3.5 and can be reproduced for $100

##Paper address: https://arxiv.org/abs/2212.10560

According to this method, Alpaca uses supervised learning of the LLaMA 7B model to fine-tune on the 52K instruction follow samples generated by text-davinci-003 in a self-instruct manner.

Stanfords 7 billion parameter open source model is comparable to GPT-3.5 and can be reproduced for $100

Overview of the self-instruct method.

Alpaca's research team first used 175 manually written instruction-output pairs in the self-instruct seed set, and then used this seed set as in-context sample prompt text-davinci-003 to generate more instructions. This research improves the self-instruct method by simplifying the build pipeline and significantly reduces costs.

Stanfords 7 billion parameter open source model is comparable to GPT-3.5 and can be reproduced for $100

##The study generated a total of 52K different instructions and corresponding outputs as training data, which used OpenAI API that costs less than $500. Since the research team has open sourced the training data, developers who want to reproduce Alpaca can save $500.

Stanfords 7 billion parameter open source model is comparable to GPT-3.5 and can be reproduced for $100

With this instruction following dataset, the next step of the research was to fine-tune the LLaMA model using Hugging Face’s training framework. And utilizes technologies such as FSDP (Fully Sharded Data Parallel) and mixed precision training. Cost-wise, fine-tuning a 7B LLaMA model on eight 80GB A100s takes 3 hours, which costs less than $100 for most cloud providers.

Model Evaluation

The study was manually evaluated using input from a self-instruct evaluation set, which was completed by 5 students on the research team. The evaluation set was collected by the authors of the self-instruct paper and covers a variety of user-oriented instructions involving email, social media, and office tools.

After blind pairwise comparison of text-davinci-003 and Alpaca 7B, the researchers found that the performance of the two models was very similar, and Alpaca was slightly better than text-davinci-003.

From the perspective of parameter scale, Alpaca is far smaller than text-davinci-003, and the mobile terminal can even run a 7B lightweight language model. This makes Alpaca significant.

In addition to utilizing the static self-instruct evaluation set mentioned above, this study also conducted interactive testing on the Alpaca model and found that Alpaca generally performed similarly to text-davinci-003.

The following are two examples tested by the research team, and the results show that Alpaca's output is good and reflects the general style of the instruction following data set. For example, Alpaca often outputs more concise answers than ChatGPT, similar to text-davinci-003.

Model defects

In the experiment, Alpaca also showed several common defects of language models, including hallucinations, toxicity and stereotypes, among which the hallucination problem is particularly serious.

For example, in the picture below, Alpaca answered that the capital of Tanzania is Dar es Salaam, but it should actually be Dodoma.

Stanfords 7 billion parameter open source model is comparable to GPT-3.5 and can be reproduced for $100

Additionally, Alpaca is capable of generating text that may appear good but contain errors or false information, which may mislead people. .

Stanfords 7 billion parameter open source model is comparable to GPT-3.5 and can be reproduced for $100

Alpaca may contain a number of other flaws related to the underlying language model and instruction tuning data. However, Alpaca remains important to the machine learning community because it provides a relatively lightweight model that can serve as a basis for studying important flaws. The Stanford research team also emphasized that Alpaca can only be used for academic research and any commercial use is prohibited.

Next, the Stanford research team will further explore the security, understanding ability, scale expansion, etc. of the Alpaca model. The research team hopes Alpaca will facilitate the development of instruction-following models.

The above is the detailed content of Stanford's 7 billion parameter open source model is comparable to GPT-3.5 and can be reproduced for $100. For more information, please follow other related articles on the PHP Chinese website!

Statement
This article is reproduced at:51CTO.COM. If there is any infringement, please contact admin@php.cn delete
从VAE到扩散模型:一文解读以文生图新范式从VAE到扩散模型:一文解读以文生图新范式Apr 08, 2023 pm 08:41 PM

1 前言在发布DALL·E的15个月后,OpenAI在今年春天带了续作DALL·E 2,以其更加惊艳的效果和丰富的可玩性迅速占领了各大AI社区的头条。近年来,随着生成对抗网络(GAN)、变分自编码器(VAE)、扩散模型(Diffusion models)的出现,深度学习已向世人展现其强大的图像生成能力;加上GPT-3、BERT等NLP模型的成功,人类正逐步打破文本和图像的信息界限。在DALL·E 2中,只需输入简单的文本(prompt),它就可以生成多张1024*1024的高清图像。这些图像甚至

找不到中文语音预训练模型?中文版 Wav2vec 2.0和HuBERT来了找不到中文语音预训练模型?中文版 Wav2vec 2.0和HuBERT来了Apr 08, 2023 pm 06:21 PM

Wav2vec 2.0 [1],HuBERT [2] 和 WavLM [3] 等语音预训练模型,通过在多达上万小时的无标注语音数据(如 Libri-light )上的自监督学习,显著提升了自动语音识别(Automatic Speech Recognition, ASR),语音合成(Text-to-speech, TTS)和语音转换(Voice Conversation,VC)等语音下游任务的性能。然而这些模型都没有公开的中文版本,不便于应用在中文语音研究场景。 WenetSpeech [4] 是

普林斯顿陈丹琦:如何让「大模型」变小普林斯顿陈丹琦:如何让「大模型」变小Apr 08, 2023 pm 04:01 PM

“Making large models smaller”这是很多语言模型研究人员的学术追求,针对大模型昂贵的环境和训练成本,陈丹琦在智源大会青源学术年会上做了题为“Making large models smaller”的特邀报告。报告中重点提及了基于记忆增强的TRIME算法和基于粗细粒度联合剪枝和逐层蒸馏的CofiPruning算法。前者能够在不改变模型结构的基础上兼顾语言模型困惑度和检索速度方面的优势;而后者可以在保证下游任务准确度的同时实现更快的处理速度,具有更小的模型结构。陈丹琦 普

解锁CNN和Transformer正确结合方法,字节跳动提出有效的下一代视觉Transformer解锁CNN和Transformer正确结合方法,字节跳动提出有效的下一代视觉TransformerApr 09, 2023 pm 02:01 PM

由于复杂的注意力机制和模型设计,大多数现有的视觉 Transformer(ViT)在现实的工业部署场景中不能像卷积神经网络(CNN)那样高效地执行。这就带来了一个问题:视觉神经网络能否像 CNN 一样快速推断并像 ViT 一样强大?近期一些工作试图设计 CNN-Transformer 混合架构来解决这个问题,但这些工作的整体性能远不能令人满意。基于此,来自字节跳动的研究者提出了一种能在现实工业场景中有效部署的下一代视觉 Transformer——Next-ViT。从延迟 / 准确性权衡的角度看,

Stable Diffusion XL 现已推出—有什么新功能,你知道吗?Stable Diffusion XL 现已推出—有什么新功能,你知道吗?Apr 07, 2023 pm 11:21 PM

3月27号,Stability AI的创始人兼首席执行官Emad Mostaque在一条推文中宣布,Stable Diffusion XL 现已可用于公开测试。以下是一些事项:“XL”不是这个新的AI模型的官方名称。一旦发布稳定性AI公司的官方公告,名称将会更改。与先前版本相比,图像质量有所提高与先前版本相比,图像生成速度大大加快。示例图像让我们看看新旧AI模型在结果上的差异。Prompt: Luxury sports car with aerodynamic curves, shot in a

五年后AI所需算力超100万倍!十二家机构联合发表88页长文:「智能计算」是解药五年后AI所需算力超100万倍!十二家机构联合发表88页长文:「智能计算」是解药Apr 09, 2023 pm 07:01 PM

人工智能就是一个「拼财力」的行业,如果没有高性能计算设备,别说开发基础模型,就连微调模型都做不到。但如果只靠拼硬件,单靠当前计算性能的发展速度,迟早有一天无法满足日益膨胀的需求,所以还需要配套的软件来协调统筹计算能力,这时候就需要用到「智能计算」技术。最近,来自之江实验室、中国工程院、国防科技大学、浙江大学等多达十二个国内外研究机构共同发表了一篇论文,首次对智能计算领域进行了全面的调研,涵盖了理论基础、智能与计算的技术融合、重要应用、挑战和未来前景。论文链接:​https://spj.scien

​什么是Transformer机器学习模型?​什么是Transformer机器学习模型?Apr 08, 2023 pm 06:31 PM

译者 | 李睿审校 | 孙淑娟​近年来, Transformer 机器学习模型已经成为深度学习和深度神经网络技术进步的主要亮点之一。它主要用于自然语言处理中的高级应用。谷歌正在使用它来增强其搜索引擎结果。OpenAI 使用 Transformer 创建了著名的 GPT-2和 GPT-3模型。自从2017年首次亮相以来,Transformer 架构不断发展并扩展到多种不同的变体,从语言任务扩展到其他领域。它们已被用于时间序列预测。它们是 DeepMind 的蛋白质结构预测模型 AlphaFold

AI模型告诉你,为啥巴西最可能在今年夺冠!曾精准预测前两届冠军AI模型告诉你,为啥巴西最可能在今年夺冠!曾精准预测前两届冠军Apr 09, 2023 pm 01:51 PM

说起2010年南非世界杯的最大网红,一定非「章鱼保罗」莫属!这只位于德国海洋生物中心的神奇章鱼,不仅成功预测了德国队全部七场比赛的结果,还顺利地选出了最终的总冠军西班牙队。不幸的是,保罗已经永远地离开了我们,但它的「遗产」却在人们预测足球比赛结果的尝试中持续存在。在艾伦图灵研究所(The Alan Turing Institute),随着2022年卡塔尔世界杯的持续进行,三位研究员Nick Barlow、Jack Roberts和Ryan Chan决定用一种AI算法预测今年的冠军归属。预测模型图

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.